122 research outputs found

    Environmental Exposure to Polychlorinated Biphenyls and p,p´-DDE and Sperm Sex-Chromosome Disomy

    Get PDF
    Background: Chromosomal abnormalities contribute substantially to reproductive problems, but the role of environmental risk factors has received little attention

    Long-Term Effects of Neonatal Exposure to Hydroxylated Polychlorinated Biphenyls in the BALB/cCrgl Mouse

    Get PDF
    The neonatal mouse model has been a valuable tool in determining the long-term effects of early exposure to estrogenic agents in mammals. Using this model, we compared the effects of 2′,4′,6′-trichloro-4-biphenylol (OH-PCB-30) and 2′,3′,4′,5′-tetrachloro-4-biphenylol (OH-PCB-61) as prototype estrogenic hydroxylated PCBs (OH-PCBs) because they are reported to exhibit relatively high estrogenic activity both in vivo and in vitro. The purpose of this study was to examine the relationship between estrogenicity and carcinogenicity of OH-PCB congeners. The OH-PCBs were tested individually and in combination to determine whether effects of combined OH-PCBs differed from those of these OH-PCBs alone. We evaluated the long-term effects of neonatal exposure to OH-PCBs with treatment doses that were based on the reported binding affinity of specific OH-PCB congeners to estrogen receptor α. BALB/cCrgl female mice were treated within 16 hr after birth by subcutaneous injections every 24 hr, for 5 days. The mice treated with OH-PCB-30 (200 μg/day) or 17β-estradiol (5 μg/day) showed similar increased incidences of cervicovaginal (CV) tract carcinomas (43% and 47%, respectively). In addition, when mice were treated with OH-PCBs as a mixture, a change in the type of CV tract tumor was observed, shifting from predominantly squamous cell carcinomas to adenosquamous cell carcinoma. From our results, we conclude that the individual OH-PCBs tested were estrogenic and tumorigenic in mice when exposed during development of the reproductive tract. These data support the hypothesis that mixtures may act differently and unexpectedly than do individual compounds

    Developmental effects of endocrine-disrupting chemicals in wildlife and humans.

    Get PDF
    Large numbers and large quantities of endocrine-disrupting chemicals have been released into the environment since World War II. Many of these chemicals can disturb development of the endocrine system and of the organs that respond to endocrine signals in organisms indirectly exposed during prenatal and/or early postnatal life; effects of exposure during development are permanent and irreversible. The risk to the developing organism can also stem from direct exposure of the offspring after birth or hatching. In addition, transgenerational exposure can result from the exposure of the mother to a chemical at any time throughout her life before producing offspring due to persistence of endocrine-disrupting chemicals in body fat, which is mobilized during egg laying or pregnancy and lactation. Mechanisms underlying the disruption of the development of vital systems, such as the endocrine, reproductive, and immune systems, are discussed with reference to wildlife, laboratory animals, and humans

    Comparison of Short-Term Estrogenicity Tests for Identification of Hormone-Disrupting Chemicals

    Get PDF
    The aim of this study was to compare results obtained by eight different short-term assays of estrogenlike actions of chemicals conducted in 10 different laboratories in five countries. Twenty chemicals were selected to represent direct-acting estrogens, compounds with estrogenic metabolites, estrogenic antagonists, and a known cytotoxic agent. Also included in the test panel were 17β-estradiol as a positive control and ethanol as solvent control. The test compounds were coded before distribution. Test methods included direct binding to the estrogen receptor (ER), proliferation of MCF-7 cells, transient reporter gene expression in MCF-7 cells, reporter gene expression in yeast strains stably transfected with the human ER and an estrogen-responsive reporter gene, and vitellogenin production in juvenile rainbow trout. 17β-Estradiol, 17α-ethynyl estradiol, and diethylstilbestrol induced a strong estrogenic response in all test systems. Colchicine caused cytotoxicity only. Bisphenol A induced an estrogenic response in all assays. The results obtained for the remaining test compounds—tamoxifen, ICI 182.780, testosterone, bisphenol A dimethacrylate, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol dodecylethoxylate, butylbenzylphthalate, dibutylphthalate, methoxychlor, o,p′-DDT, p,p′-DDE, endosulfan, chlomequat chloride, and ethanol—varied among the assays. The results demonstrate that careful standardization is necessary to obtain a reasonable degree of reproducibility. Also, similar methods vary in their sensitivity to estrogenic compounds. Thus, short-term tests are useful for screening purposes, but the methods must be further validated by additional interlaboratory and interassay comparisons to document the reliability of the methods

    Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage

    Get PDF
    Estrogen-mediated proliferation is fundamental to normal mammary gland development. Recent studies have demonstrated that amphiregulin is a critical paracrine regulator of estrogen action during ductal morphogenesis. These studies implicate a critical role for amphiregulin in mammary stem cell differentiation as well as breast cancer initiation and progression

    Medical hypothesis: xenoestrogens as preventable causes of breast cancer.

    Get PDF
    Changes in documented risk factors for breast cancer and rates of screening cannot completely explain recent increases in incidence or mortality. Established risk factors for breast cancer, including genetics, account for at best 30% of cases. Most of these risk factors can be linked to total lifetime exposure to bioavailable estrogens. Experimental evidence reveals that compounds such as some chlorinated organics, polycyclic aromatic hydrocarbons (PAHs), triazine herbicides, and pharmaceuticals affect estrogen production and metabolism and thus function as xenoestrogens. Many of these xenoestrogenic compounds also experimentally induce mammary carcinogenesis. Recent epidemiologic studies have found that breast fat and serum lipids of women with breast cancer contain significantly elevated levels of some chlorinated organics compared with noncancer controls. As the proportion of inherited breast cancer in the population is small, most breast cancers are due to acquired mutations. Thus, the induction of breast cancer in the majority of cases stems from interactions between host factors, including genetics and environmental carcinogens. We hypothesize that substances such as xenoestrogens increase the risk of breast cancer by mechanisms which include interaction with breast-cancer susceptibility genes. A series of major epidemiologic studies need to be developed to evaluate this hypothesis, including studies of estrogen metabolism, the role of specific xenoestrogenic substances in breast cancer, and relevant genetic-environmental interactions. In addition, experimental studies are needed to evaluate biologic markers of suspect xenoestrogens and biologic markers of host susceptibility and identify pathways of estrogenicity that affect the development of breast cancer. If xenoestrogens do play a role in breast cancer, reductions in exposure will provide an opportunity for primary prevention of this growing disease.(ABSTRACT TRUNCATED AT 250 WORDS

    Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice - what their phenotypes reveal about mechanisms of estrogen action

    Get PDF
    Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estrogen action is via binding and modulation of activity of the estrogen receptors (ERs), which are ligand-dependent nuclear transcription factors. ERs are found in highest levels in female tissues critical to reproduction, including the ovaries, uterus, cervix, mammary glands and pituitary gland. Since other affected tissues have extremely low levels of ER, indirect effects of estrogen, for example induction of pituitary hormones that affect the bone, have been proposed. The development of transgenic mouse models that lack either estrogen or ER have proven to be valuable tools in defining the mechanisms by which estrogen exerts its effects in various systems. The aim of this article is to review the mouse models with disrupted estrogen signaling and describe the associated phenotypes

    Male reproductive health and environmental xenoestrogens

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314
    corecore