8,897 research outputs found

    The role of newly born magnetars in gamma-ray burst X-ray afterglow emission: Energy injection and internal emission

    Get PDF
    Swift observations suggest that the central compact objects of some gamma-ray bursts (GRBs) could be newly born millisecond magnetars. Therefore, considering the spin evolution of the magnetars against r-mode instability, we investigate the role of magnetars in GRB X-ray afterglow emission. Besides modifying the conventional energy injection model, we pay particular attention to the internal X-ray afterglow emission, whose luminosity is assumed to track the magnetic dipole luminosity of the magnetars with a certain fraction. Following a comparison between the model and some selected observational samples, we suggest that some so-called canonical X-ray afterglows including the shallow decay, normal decay, and steeper-than-normal decay phases could be internally produced by the magnetars (possibly through some internal dissipations of the magnetar winds), while the (energized) external shocks are associated with another type of X-ray afterglows. If this is true, then from those internal X-ray afterglows we can further determine the magnetic field strengths and the initial spin periods of the corresponding magnetars. © 2010. The American Astronomical Society. All rights reserved.published_or_final_versio

    High-redshift gamma-ray bursts: Observational signatures of superconducting cosmic strings?

    Get PDF
    The high-redshift gamma-ray bursts (GRBs), GRBs 080913 and 090423, challenge the conventional GRB progenitor models by their short durations, typical for short GRBs, and their high energy releases, typical for long GRBs. Meanwhile, the GRB rate inferred from high-redshift GRBs also remarkably exceeds the prediction of the collapsar model, with an ordinary star formation history. We show that all these contradictions could be eliminated naturally, if we ascribe some high-redshift GRBs to electromagnetic bursts of superconducting cosmic strings. High-redshift GRBs could become a reasonable way to test the superconducting cosmic string model because the event rate of cosmic string bursts increases rapidly with increasing redshifts, whereas the collapsar rate decreases. © 2010 The American Physical Society.published_or_final_versio

    The luminosity function of Swift long gamma-ray bursts

    Get PDF
    The accumulation of Swift observed gamma-ray bursts (GRBs) has gradually made it possible to directly derive a GRB luminosity function (LF) from the observational luminosity distribution. However, two complexities are involved: (i) the evolving connection between GRB rate and cosmic star formation rate; and (ii) observational selection effects due to telescope thresholds and redshift measurements. With a phenomenological investigation of these two complexities, we constrain and discriminate two popular competing LF models (i.e. the broken-power-law LF and the single-power-law LF with an exponential cut-off at low luminosities). As a result, we find that the broken-power-law LF may be more favoured by observations, with a break luminosity L b= 2.5 × 10 52ergs -1 and prior- and post-break indices ν 1= 1.72 and ν 2= 1.98. Regarding an extra evolution effect expressed by a factor (1 +z) δ, if the metallicity of GRB progenitors is lower than ~0.1Z ⊙ as expected by some collapsar models, then there may be no extra evolution effect other than the metallicity evolution (i.e. δ approaches zero). Alternatively, if we remove the theoretical metallicity requirement, then a relationship between the degenerate parameters δ and Z max can be found, very roughly, δ~ 2.4(Z max/Z ⊙- 0.06). This indicates that extra evolution could become necessary for relatively high metallicities. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.published_or_final_versio

    Clinical and genetic profile of catecholaminergic polymorphic ventricular tachycardia in Hong Kong Chinese children

    Get PDF
    published_or_final_versio

    Capacity analysis of hybrid wireless networks with long-range social contacts behavior

    Get PDF
    Hybrid wireless networks are networks that are composed of both ad hoc transmissions and cellular transmissions. Many existing works have analyzed the capacity of hybrid wireless networks. By assuming the uniform traffic model that a source node would select a random node as the destination, the network capacity is a function of number of nodes and number of base stations. Nevertheless, the real network traffic pattern is related to the social behaviors of users. In this work, we study the capacity of hybrid wireless networks with the social traffic model under the L-maximum-hop routing policy. If two nodes are within L hops away, packets will be transmitted in the ad hoc mode; otherwise, packets are transmitted through the base stations. To our best knowledge, we are the first to study this problem and develop the capacity as a function of number of nodes, number of stations, traffic model parameters, and L.published_or_final_versio

    Energy Efficiency Modeling and Analysis in Wireless Sensor Networks

    Full text link
    We propose here an extended linear feedback model, taking the binary exponential backo® mechanism adopted in IEEE 802.15.4 CSMA/CA and analyse the energy consumption issues of the one hop sensor nodes. Numerical results show that the energy consumption in Wireless Sensor Networks (WSNs) can be reduced by applying CSMA protocol with ¯xed contention window size. Besides, an optimal contention window size can achieve the reasonable successful probability of the packet transmission without extra wastage of the battery power

    Electronic Properties of Boron and Nitrogen doped graphene: A first principles study

    Full text link
    Effect of doping of graphene either by Boron (B), Nitrogen (N) or co-doped by B and N is studied using density functional theory. Our extensive band structure and density of states calculations indicate that upon doping by N (electron doping), the Dirac point in the graphene band structure shifts below the Fermi level and an energy gap appears at the high symmetric K-point. On the other hand, by B (hole doping), the Dirac point shifts above the Fermi level and a gap appears. Upon co-doping of graphene by B and N, the energy gap between valence and conduction bands appears at Fermi level and the system behaves as narrow gap semiconductor. Obtained results are found to be in well agreement with available experimental findings.Comment: 11 pages, 4 figures, 1 table, submitted to J. Nanopart. Re

    Particle Collisions on Stringy Black Hole Background

    Full text link
    The collision of two particles in the background of a Sen black hole is studied. With the equations of motion of the particles, the center-of-mass energy is investigated when the collision takes place at the horizon of a Sen black hole. For an extremal Sen black hole, we find that the center-of-mass energy will be arbitrarily high with two conditions: (1) spin a≠0a\neq 0 and (2) one of the colliding particles has the critical angular momentum lc=2l_{\text{c}}=2. For a nonextremal Sen black hole, we show that, in order to obtain an unlimited center-of-mass energy, one of the colliding particles should have the critical angular momentum lc′=2r+/al'_{\text{c}}=2 r_{+}/a (r+r_{+} is the radius of the outer horizon for a nonextremal black hole). However, a particle with the angular momentum l=lc′l=l'_{\text{c}} could not approach the black hole from outside of the horizon through free fall, which implies that the collision with arbitrarily high center-of-mass energy could not take place. Thus, there is an upper bound of the center-of-mass energy for the nonextremal black hole. We also obtain the maximal center-of-mass energy for a near-extremal black hole and the result implies that the Planck-scale energy is hard to be approached. Furthermore, we also consider the back-reaction effects. The result shows that, neglecting the gravitational radiation, it has a weak effect on the center-of-mass energy. However, we argue that the maximum allowed center-of-mass energy will be greatly reduced to below the Planck-scale when the gravitational radiation is included.Comment: 17 pages, 4 figures, published versio
    • …
    corecore