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Abstract—Hybrid wireless networks are networks that are
composed of both ad hoc transmissions and cellular transmis-
sions. Many existing works have analyzed the capacity of hybrid
wireless networks. By assuming the uniform traffic model that a
source node would select a random node as the destination, the
network capacity is a function of number of nodes and number
of base stations. Nevertheless, the real network traffic pattern is
related to the social behaviors of users. In this work, we study
the capacity of hybrid wireless networks with the social traffic
model under the L-maximum-hop routing policy. If two nodes
are within L hops away, packets will be transmitted in the ad
hoc mode; otherwise, packets are transmitted through the base
stations. To our best knowledge, we are the first to study this
problem and develop the capacity as a function of number of
nodes, number of stations, traffic model parameters, and L.

I. INTRODUCTION

The capacity of wireless networks has been received much
attention in the recent years. It is well known that Gupta and
Kumar derived the achievable throughput capacity of wireless
ad hoc networks [1]. They give the per node network capacity
as a function of number of nodes in a unit area. Their study
suggests to increase network capacity by augmenting base
stations to pure ad hoc network, and thus, the hybrid wire-
less network composed by ad hoc transmissions and cellular
transmissions was proposed [2].

In the hybrid wireless networks, there are two ways for
transmitting data packets from the source to the destination.
In the ad hoc mode, the data packets are forwarded by the
intermediate nodes with multiple hops. The whole procedure
of multi-hop transmission consumes the wireless bandwidth
resources. The data packets can also be transmitted in the
cellular mode. In that case, the source node transmits the data
to the nearest base station, and then the destination can fetch
the data from its associated base station. The base stations
are assumed to be connected via a wired network, and thus,
data transmission between two base stations does not consume
wireless bandwidth resources.

Different routing policies can be used in a hybrid wireless
network. The two major ones are same cell routing policy [2]
and L-maximum-hop routing policy [3]. Under the same cell
routing policy, the data packets are transmitted in ad hoc mode
if the source and the destination are in the same cell (covered
by the same base station); otherwise, they are transmitted in
cellular mode. In L-maximum-hop routing policy, the data

packets are transmitted in ad hoc mode if the source and the
destination are within L hops; otherwise, they are transmitted
in cellular mode. This work applies the L-maximum-hop
routing policy, since it can efficiently utilize the short-range
ad hoc transmission opportunities.

Traffic model is also a major factor on capacity analysis.
Most works assume the uniform traffic model. However, it
cannot truly reflect the actual user behaviors. Recently, the
social traffic model has been actively studied to model the
traffic in wireless networks [12]. The long-range contacts
traffic model is used in [12]. Each node has a set of long-
range social contacts, and the traffic is generated probably
between the source and a node selected from the long-range
social contacts, which is similar as human behavior. We apply
the social traffic model as that in [12]. While [12] studies the
capacity of ad hoc networks, we perform capacity analysis of
hybrid wireless networks.

To our best knowledge, our work is the first to study the
capacity of hybrid wireless networks with social traffic model.
We derive the network capacity as a function of number of
nodes, number of base stations, traffic model parameters, and
routing policy L. Our derived results demonstrate that traffic
model and routing policy are both the important factors on the
scaling law of network capacity. More importantly, our results
facilitate us to find the optimal L to maximize the network
capacity.

The rest of the paper is organized as follows: Section II
introduces the related works on the capacity analysis of hybrid
wireless networks. Section III presents the network model and
traffic model. In Section IV, we study the hybrid wireless
network capacity with the social traffic model. We compare our
results with the existing results in Section V. Our comparison
results demonstrate the correctness of our methodology to
calculate the network capacity. Moreover, our results illustrate
the efficiency of the routing policy derived by this paper to
improve the network capacity. Section VI concludes our work.

II. RELATED WORKS

Ref. [2] proposes to analyze the hybrid wireless network
capacity with the same cell routing policy. In the same cell
routing policy, a source node transmits data packets to the
destination in an ad hoc manner if they are in the same cell.
The work in [2] shows that if the number of base stations m
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grows asymptotically slower than
√
n, the maximum network

throughput capacity is Θ(
√

n
log n

m2
W )1, where n is the number

of nodes and W is the channel capacity. On the other hand,
if m grows asymptotically faster than

√
n, the maximum

throughput capacity is Θ(mW ). The work in [4] assumes
that m grows asymptotically with n, and sets the transmission
range of each node such that any two nodes in the same cell
can directly communicate with each other. If the source and
the destination are in the same cell, the packets are transmitted
in ad hoc manner; otherwise, the packets are forwarded by
the base station. The authors derive the network throughput
capacity as Θ(n W

logn ). The work in [5] assumes that a source
node transmits a portion of traffic to the destination using ad
hoc mode, and transmits another portion through the base sta-
tion, so that their solutions are independent of routing policy.
Their study shows that if m grows asymptotically slower than√

n
logn , adding base station does not take benefit according to

the scaling law of network throughput capacity. If m grows
asymptotically faster than

√
n

logn and slower than n
logn , the

network capacity is Θ(mW ). If m grows asymptotically faster
than n

logn , the network throughput capacity becomes Θ( nW
logn ).

The work in [3] applies the L-maximum-hop routing policy.
If the source can reach to the destination within L hops,
the packets are transmitted in ad hoc manner. Otherwise,
the packets are forwarded by the base stations. It is shown

in [3] that when L = Ω( n
1
3

log
2
3 n

), the network capacity is

Θ( nW1

L logn ) + Θ(mW2), where W1 and W2 are the bandwidth
allocated for ad hoc mode and cellular mode, respectively.

When L grows asymptotically slower than n
1
3

log
2
3 n

, the network

capacity becomes Θ(L2 lognW1)+Θ(mW2). Ref. [7] uses the
same cell routing policy and allows the source node to transmit
to a base station using multiple hops. The authors derive the
network capacity as Θ(

√
nm
lognW1)+Θ(mn W2). When m grows

asymptotically slower than n
logn , the maximum capacity is

denoted by Θ(
√

nm
lognW ), which follows that if the number of

base stations are increased by k times, we can have a gain of√
k on capacity. The work in [6] considers the two-dimensional

strip network topology, and finds the optimal ratio of the width
to the length for the strip network model, so as to improve the
network capacity scaling behavior.

Some works study the capacity of hybrid wireless mobile
networks, in which nodes randomly move in the network area.
The work in [10] assumes that users move randomly within
a bounded distance around its home. The authors also let
the network area scales with f2(n), and derive the per node
capacity as the function of f(n). On the other hand, the work
in [8] considers the local node mobility in hybrid wireless
network. The authors assume that each node moves only in
its local cell. The authors in [9] develop an analytical model
by assuming the infinite buffer to study the average packet
delivery delay with base station. The results show that if the
number of base stations grows asymptotically faster than

√
n,

1f(n) = O(g(n)) for if and only if there exist constants N and C such
that |f(n)| ≤ C|g(n)| for all n > N ; f(n) = Ω(g(n)) means that g(n) =
O(f(n)); f(n) = Θ(g(n)) implies that f(n) = O(g(n)) and g(n) =

O(f(n)); If g(n) �= 0, f(n) = o(g(n)) if and only if limn→∞ f(n)
g(n)

= 0.

the average packet delay is independent of the number of
nodes. Our work does not consider the mobility of nodes.

Few works study the effect of traffic model on network
capacity. In [11], the probability that a source node communi-
cates with a destination x distance units away is proportional
with x−α. With the social traffic model, the authors analyzes
the effect of α on network capacity. The traffic model in
[12] considers the long-range social contacts. Each node has q
long-range social contact nodes, from which the destination is
randomly selected. The probability for each node contacting
another node x distances away is also proportional with x−α.
[12] derives the network capacity as a function of number
of nodes, α, and q. Both works in [11] and [12] consider the
wireless ad hoc networks. Besides traffic model, routing policy
is another major factor on the capacity of hybrid wireless
networks. Therefore, the problem becomes more complicated
since the network capacity is affected by both the two factors
simultaneously.

III. SYSTEM MODELS

A. Hybrid Wireless Network Model

We consider the hybrid wireless network consisting n
nodes and m base stations. The hybrid wireless network is
composed by two layers: ad hoc layer and cellular layer,
which use different bandwidth resources so that there is no
interference between them. In the ad hoc layer, n nodes are
uniformly and independently distributed on the surface of a
torus of unit area. As said in [3], the assumption of torus
enables us to omit the area edge issue, but the results derived
with this assumption are suitable for the unit square as well. In
the cellular layer, m base stations are uniformly deployed in
the network: dividing the area into m cells, and each cell has
the 1

m area size. The base stations are connected by a wired
network, such that there is no bandwidth limit.

The transmission range r(n) for each node to communicate
with another node is the same. Following [12], r(n) =

Θ(
√

logn
n ), so that the probability that a node has no neighbor

tends to zero as n goes to infinity. In other words, the setting
of r(n) assures the connectivity of the network.

Following many existing works [1], we apply the protocol
interference model. Assume that node i transmits to node j,
the packet can be correctly received by j if the following
conditions are satisfied: 1) The distance between i and j is
no larger than r(n); 2) no node inside the interference range
of node j is transmitting concurrently, where the interference
range is (1 + Δ)r(n), and Δ > 0.

In the hybrid wireless networks, a source node can transmit
the packet to the destination either in ad hoc mode or in cellular
mode. If the source transmits packets to the destination in ad
hoc mode, the data is forwarded by the intermediate nodes. If
the packets are transmitted in cellular mode, the source node
first transmits the packet to the nearest base station, and then,
the data is sent to the base station from which the destination
can fetch the data.

Denote by Wa and Wc the bandwidth resources allocated
for ad hoc transmission and cellular transmission, respectively.
Given a source and destination pair, the source node should
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determine in which mode the data is transmitted. Following
[3], we use the L-maximum-hop routing policy. If the mini-
mum hops between the source and the destination is within L
hops, the data is transmitted using ad hoc resources; otherwise,
the data is transmitted using cellular resources.

B. Preliminaries

In this section, we introduce the traffic model with social
behavior. Following [12], this work applies the Kleinberg’s
traffic model, and each node s has long-range social contacts
(LSC). Following [12], we assume that each source node has
the same number of LSCs, denoted by q. The long-range
contacts are selected independently, while closer nodes to the
source are selected with higher probability. The probability for

s to contact node i is denoted by d−α
i∑

n
j=1 d−α

j

, where di denotes

the distance between s and i. The sum of the probabilities for
s to contact each node in the network is 1. The probability for
node s to have the set of LSCs {vi1 , . . . , viq} can be written
as

P (LSC = {vi1 , . . . , viq}) =
d−α
i1

. . . d−α
iq∑

1≤j1,...,jq≤n d
−α
j1

. . . d−α
jq

(1)

By (1), the sum of all the probabilities of s selecting q LSCs
is 1. Please refer to [12] for more details. We now calculate
the probability that vk is selected as a LSC:

P (vk ∈ LSC)
=

∑
1≤i1,...,iq−1≤n,ij �=k P (LSC = {vk, vi1 , . . . , viq})

=

∑
1≤i1,...,iq−1≤n,ij �=k d−α

k d−α
i1

...d−α
iq−1∑

1≤j1,...,jq≤n d−α
j1

...d−α
jq

(2)

In case that vk is selected as a LSC of source node s,
the probability that vk is the destination of the flow originated
from s is 1

q . In a word, the probability for node vk to be the
destination corresponding to source node s is calculated as

P (ϑs = vk) =
1

q
P (vk ∈ LSC) (3)

IV. NETWORK CAPACITY STUDY

In this section, we study the hybrid wireless network
capacity under the social traffic model. Generally speaking,
the network capacity is contributed by two parts: the capacity
in ad hoc layer and the capacity in cellular layer.

A. Main conclusions

Theorem 1: Consider a hybrid wireless network consist-
ing n nodes and m base stations. Each source node has a
social group which consists q long-range contacts selected
independently. Denote by W1 and W2 the bandwidth resources
allocated for ad hoc transmission and cellular transmission,
respectively. The probability for each node contacting another
node x distances away is proportional with x−α

Case I: limn→∞ q = ∞.

When L = Θ

(
n

1
3

log
2
3 n

)
, the maximum network capacity is

Θ

(
n

2
3

log
1
3 n

W1

)
+Θ

(
mW2

)
.

Case II: limn→∞ q < ∞.

1) 0 ≤ α < 2. When L = Θ

(
( n−q+1

n2a2−α
2 (n)

)
1

3−α

)
, where

a(n) = Θ( logn
n ), we have the maximum network capacity

Θ

(
n

6−α
6−2α

(logn)
2−α
6−2α (n−q+1)

1
3−α

W1

)
+Θ

(
mW2

)
.

2) 2 ≤ α < 3. When L ≥ 1 and L = Θ

(
1

)
, the maximum

network capacity is Θ

(
n

log nW1

)
+Θ

(
mW2

)
.

3) α ≥ 3. The network capacity is Θ

(
n

lognW1

)
+

Θ

(
mW2

)
, which is independent of L.

�

When q goes to infinity as n → ∞, the traffic model is
the same as the uniform model. That is, the probability for
a source node to select a node as the destination is denoted
by 1

n . Thus, the optimal L is independent of q. Our derived
result is the same as that in [3] which considers the uniform
traffic model and the same routing policy. When each node
has finite number of long range contacts, limn→∞ q < ∞, we
give the optimal L under the different traffic models. In the
case of 0 ≤ α < 2, the optimal L depends on n, α and q.
The optimal scaling law of L is lower as α increases. In the
case of 2 < α < 3, the optimal scaling law of L should be
set to a constant. When α > 3, the destination is probably
located close to the source node, such that the number of ad
hoc flows and the average hop count are both independent of
L. Therefore, the ad hoc network capacity is independent of
L. In other words, in the case of α > 3, the routing policy
has no impact of the network capacity. We also find that the
maximum ad hoc network capacity with 2 < α < 3 is the
same as that with α > 3.

In case that m does not grow fast, the maximum network
capacity is mainly contributed by the ad hoc network capacity.
Our study suggests that an appropriate transmission hop thresh-
old should be set to limit the long range ad hoc transmission,
so as to improve the network capacity.

B. Baseline of Network Capacity Derivation

The capacity in the cellular layer denotes the throughput
contributed by cellular transmission. Assume that there are at
most Δc cells interfering with a given cell. The bandwidth
allocated for each cell is lower bounded by Wc

Δc
. On the other

hand, the bandwidth for each cell is upper bounded by Wc.
Δc is independent of n and m [3], and thus, the throughput
capacity for each cell is Θ(Wc). Since there are totally m
cells, the throughput capacity contributed by the cellular layer
is denoted by

Λc = Θ(mWc). (4)
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a(n)1/2 

A1 

A2 A4L 

A 

Fig. 1. A illustration for network division.

In the following, we focus on analyzing the throughput
capacity contributed by ad hoc layer. Before we present the
details, we describe the baseline of our derivation process.

We divide the network area into multiple subcells, and each
subcell has the size of a(n), as illustrated in Fig. 1 which is
borrowed from [12]. We also let a(n) = Θ( logn

n ), such that a
node in a subcell can transmit to any node in the neighboring
subcells. Note that a cell may consist several subcells. Fig. 1
illustrates four cells divided by dash lines. Denote by Pad the
probability for each source node to transmit to the destination
in an ad hoc manner. Based on Pad, we calculate the number
of flows transmitted in the ad hoc layer, denoted by Nad.
Afterwards, we calculate the expected hop count for each ad
hoc flow, denoted by E[h], and then, we calculate the total
number of hops for all the ad hoc flows, H = Nad ·E[h]. Since
nodes are randomly deployed in the network area, following
[13], we calculate the average number of flows going through
a certain subcell, denoted by E[Z] = H · a(n). As referred to
[7], it is shown that there is at most c = O((2+Δ)2) number
of interfering subcells of any given subcell. In Fig. 1, only
one subcell in each c subcells can be active at the same time.
Since c is independent of n and m, the bandwidth allocated
for each subcell is asymptotically proportional with Wa. We
thus calculate the bandwidth allocated for each hop in a given
subcell as Λ0

ad = Θ( Wa

E[Z] ). Finally, we discuss the network
throughput contributed by ad hoc layer as Λad = Nad · Λ0

ad.

C. Calculating Total Number of Ad hoc Flows

As illustrated in Fig. 1, when the destination is located at
the gray areas, the number of hops from the source to the
destination is L. We can observe that are 4x subcells in which
the destination is x hops away from the source node. Note that
we assume the network area is a surface torus of unit area,
and so we do not consider the edge issue. If the destination
is located in the area surrounded by the grey subcells, the
flow is transmitted in ad hoc layer. Denote by P (X = x) the
probability that the destination is x away from the source node.
We thus have the following

P (X = x) =

4x∑
l=1

∑
vk∈Al

P (ϑs = vk) (5)

Al represents a subcell l hops away from the source node.
The probability for a destination located in Al is calculated
by

∑
vk∈Al

P (ϑs = vk), that is, the sum of the probabilities
that each node in Al is the destination. Since the nodes are
randomly deployed in the network area, the probability for any
node located in Al is a(n), and the number of nodes contained
in Al is thus n · a(n). We thus have

P (X = x) =
∑4x

l=1

∑
vk∈Al

P (ϑs = vk)

=
∑4x

l=1 n · a(n)P (ϑs = vk)
(6)

In Fig. 1, if the destination is located in subcell A, we
consider that it takes two hops from the source to the destina-
tion, and actually the destination may be in the transmission
range of the source node. This assumption would not affect the
analysis on the scaling behavior, as referred to [12]. Actually,
Our results obtained based on the assumption agree with those
obtained without this assumption, as shown later.

We are going to consider two cases: limn→∞ q = ∞ and
limn→∞ q < ∞.

Case I: limn→∞ q = ∞.

As [12] shows that when limn→∞ q = ∞, we have P (ϑs =
vk) = 1

n . In this case, the traffic model is the same as the
uniform traffic model in the existing works. We calculate

Pad =
∑L

x=1

∑4x
l=1

∑
vk∈Al

P (ϑs = vk)

=
∑L

x=1

∑4x
l=1 n · a(n) · 1

n
= 2L(1 + L)a(n)

(7)

We thus have

Nad = nPad = 2nL(1 + L)a(n). (8)

Case II: limn→∞ q < ∞.

We have the following lemma, and the detailed derivation
can be found in Appendix.

Lemma 1: The probability for each source node to transmit
the flow using ad hoc mode is

Pad ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ

(
n

n−q+1a
1−α

2 (n)L2−α

)
0 ≤ α < 2

Θ

(
n

n−q+1
lnL

ln a− 1
2 (n)

)
α = 2

Θ

(
n

n−q+1

)
α > 2

(9)

By Lemma 1, we calculate the total number of ad hoc flows
as
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Nad ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ

(
n2

n−q+1a
1−α

2 (n)L2−α

)
0 ≤ α < 2

Θ

(
n2

n−q+1
lnL

ln a− 1
2 (n)

)
α = 2

Θ

(
n2

n−q+1

)
α > 2

(10)

(10) shows that the number of ad hoc flows grows faster as
α increases from zero to two. As α is larger, more destinations
are located close to the source, and thus, the probability that
the flows are transmitted in the ad hoc layer is higher. When
α > 2, L has no impact on the scaling law of the number of
ad hoc flow.

D. Calculating Number of Ad hoc Flows in Each Subcell

In the following, we describe how to calculate the total
number of flows going through a given subcell. Denote by H
the total hops of the ad hoc flows. Let hi be the hops of an
ad hoc flow i. We have

E[H ] = E[

Nad∑
i=1

hi] =

Nad∑
i=1

E[hi] (11)

Let Zj
i = 1 represent that flow i goes through subcell j;

otherwise, Zj
i = 0. Following [7], we have E[Zj

i ] = a(n),
where a(n) is the size of each subcell. The average number
of flows going through a certain subcell can be calculated as
follows [13].

E[Z] = EH [E[Z|H ]]

= EH [HE[Zj
i ]]

= E[H ] · Z[Zj
i ]

= Nad ·E[hi] · a(n)
(12)

By (12), in order to calculate E[Z], the main point is to
calculate E[hi].

E[hi] =
∑L

x=1 xP (X = x|ad hoc flow)

=
∑L

x=1 x
P (X=x,ad hoc flow)

P (ad hoc flow)

=
∑L

x=1 x
P (X=x)

Pad

(13)

We also have

L∑
x=1

xP (X = x) =

L∑
x=1

x

4x∑
l=1

∑
vk∈sl

P (ϑd = vk). (14)

Now, we describe how to calculate E[hi]. Similarly, we
need to consider two cases: limn→∞ q = ∞ and limn→∞ q <
∞.

Case I: limn→∞ q = ∞.

Since P (ϑd = vk) =
1
n , we have

L∑
x=1

xP (X = x) =
2L(1 + L)(2L+ 1)a(n)

3
. (15)

Therefore, E [hi] =
2L+1

3 .

Case II: limn→∞ q < ∞.

We have the following lemma, and the derivation details
can be found in Appendix.

Lemma 2: The expected value for the hops of each ad hoc
flows is

E [hi] ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

(
L3−α

L2−α

)
= Θ(L) 0 ≤ α < 2

Θ

(
L

lnL

)
α = 2

Θ

(
L3−α

)
2 < α < 3

Θ

(
lnL

)
α = 3

Θ

(
1

)
α > 3

(16)

(16) shows that when 0 ≤ α ≤ 3, the average hop count of
ad hoc flows increases with L, and the growth rate reduces as
α increases. When α is larger, more destinations are located
close to the source node, and thus, the impact factor of L on
the scaling law of E[hi] is less. When α > 3, we find that the
scaling law of E[hi] is independent of L. For the same reason,
most of the flows are short range, so that L would not affect
significantly on E[hi].

E. Ad hoc Network Capacity Analysis

We then calculate the throughput of each ad hoc flow

Λ0
ad = Θ

(
Wa

E[Z]

)
. (17)

In the case that limn→∞ q = ∞, we have

Λ0
ad = Θ

(
Wa

E[Z]

)

= Θ

(
Wa

Nad·E[hi]·a(n)

)

= Θ

(
Wa

nL3a2(n)

) (18)

In case that L = Ω

(
n

1
3

log
2
3 n

)
, we have

Λad = Nad · Λ0
ad

= Nad ·Θ
(

Wa

Nad·E[hi]·a(n)

)

= Θ

(
nWa

L logn

)
(a(n) = Θ( logn

n ))

(19)
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In the following, we remove Wa when there is no confu-

sion. When L = O

(
n

1
3

log
2
3 n

)
, we have Λ0

ad = Ω(1). That is,

per node ad hoc capacity grows asymptotically faster than a
constant. On the other hand, the maximum capacity for each ad
hoc flow must be less than Wa, and thus we have Λ0

ad = O(1).
Finally, we have Λ0

ad = Θ(1) under this situation. The network
ad hoc capacity is calculated as

Λad = Nad · Λ0
ad

= Nad ·Θ(1)

= Θ

(
L2 log n

)
(a(n) = Θ( logn

n ))
(20)

When L grows asymptotically faster than n
1
3

log
2
3 n

, by (8),

the number of ad hoc flows grows asymptotically with L2.
However, by (18), the per node capacity reduces asymptotically
with L3. Therefore, the network capacity reduces asymptoti-
cally with L, as shown in (19). This means that L should be

better grow asymptotically with n
1
3

log
2
3 n

to improve the network

capacity scaling behavior. On the other hand, when L grows

asymptotically slower than n
1
3

log
2
3 n

, we mentioned that the per

node capacity is independent of L. Thus, the network capacity
grows asymptotically with L2, as shown in (20). Therefore, the

ad hoc network capacity is maximized when L = Θ

(
n

1
3

log
2
3 n

)
,

which is

Λ∗
ad = Θ

(
n

2
3

(logn)
1
3

)
(21)

We now consider the network capacity in the case that
limn→∞ q < ∞. By (10), (16), (12), and (17), we calculate

Λ0
ad =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

(
n−q+1

n2a2− α
2 (n)L3−α

)
0 ≤ α < 2

Θ

(
(n−q+1) lna− 1

2 (n)
n2La(n)

)
α = 2

Θ

(
n−q+1

n2a(n)L3−α

)
2 < α < 3

Θ

(
n−q+1

n2a(n) lnL

)
α = 3

Θ

(
n−q+1
n2a(n)

)
α > 3

(22)

We have n−q+1

n2a2−α
2 (n)L3−α

= o( (n−q+1) ln a− 1
2 (n)

n2La(n) ) and
n−q+1

n2a(n)L3−α = o( n−q+1
n2a(n) lnL). For clarity, we discuss the net-

work capacity scaling behavior when 0 ≤ α < 2, 2 < α < 3,
and α > 3.

(a). When 0 ≤ α < 2, we should discuss the per

node ad hoc capacity when L = Ω

(
( n−q+1

n2a2−α
2 (n)

)
1

3−α

)
and

L = O

(
( n−q+1

n2a2−α
2 (n)

)
1

3−α

)
, separately. In case that L =

O

(
( n−q+1

n2a2−α
2 (n)

)
1

3−α

)
, we have Λ0

ad(n) = Ω(1). Since the per

node ad hoc capacity must be no greater than Wa, we have
Λ0
ad(n) = Θ(1). Therefore, we have

Λ0
ad =

⎧⎪⎪⎨
⎪⎪⎩

Θ

(
n−q+1

n2a2−α
2 (n)L3−α

)
L = Ω

(
( n−q+1

na2− α
2 (n)

)
1

3−α

)

Θ

(
1

)
L = O

(
( n−q+1

na2−α
2 (n)

)
1

3−α

)
(23)

When L = Ω

(
( n−q+1

n2a2− α
2 (n)

)
1

3−α

)
, the network capacity is

written as

Λad = Nad · Λ0
ad

= Θ

(
n2

n−q+1a
1−α

2 (n)L2−α

)
·Θ

(
n−q+1

n2a2− α
2 (n)L3−α

)

= Θ

(
1

a(n)L

)
(24)

When L = O

(
( n−q+1

n2a2−α
2 (n)

)
1

3−α

)
, the network capacity is

written as

Λad = Nad · Λ0
ad

= Θ

(
n2

n−q+1a
1−α

2 (n)L2−α

)
·Θ

(
1

)

= Θ

(
n2

n−q+1a
1−α

2 (n)L2−α

) (25)

By (24) and (25), we have the maximum ad hoc network

capacity when L = Θ

(
( n−q+1

n2a2− α
2 (n)

)
1

3−α

)
, which is

Λ∗
ad = Nad · Λ0

ad

= Θ

(
n2

n−q+1a
1−α

2 (n)L2−α

)
·Θ

(
1

)

= Θ

(
n

6−α
6−2α

(logn)
2−α
6−2α (n−q+1)

1
3−α

)
(a(n) = Θ( logn

n ))

(26)

Assume that q is a constant. When α = 0, we have Λ∗
ad =

Θ

(
n

2
3

(logn)
1
3

)
according to (26), and it is the same as (21)

derived by assuming the uniform traffic model. When α =
0, each node randomly selects q constant long-range social
contacts from all the nodes in the network, and then randomly
chooses the destination from the q LSCs. This implies that the
destination is uniformly selected by the source node, and thus,
the traffic model is basically the same as the uniform traffic
model. Therefore, the capacity scaling behavior with α = 0
and constant q is the same as that with the uniform traffic
model.

(b). When 2 < α < 3, by (22), the capacity increases
as L decreases. Since L must be larger than 1, we have the
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maximum capacity when L = Θ(1). By (22) and (10), the
network capacity is written as

Λ∗
ad = Nad · Λ0

ad

= Θ

(
n2

n−q+1

)
·Θ

(
n−q+1

n2a(n)·Θ(1)

)

= Θ

(
n

logn

)
(a(n) = Θ( logn

n ))

(27)

(c). When α > 3, by (22), the per node capacity is
independent of L, and the network capacity is

Λ∗
ad = Nad · Λ0

ad

= Θ

(
n2

n−q+1

)
·Θ

(
n−q+1
n2a(n)

)

= Θ

(
n

logn

)
(a(n) = Θ( logn

n ))

(28)

When α > 3, the destination is probably located locally
around the source node, and therefore, the flow probably has
small hop count and is transmitted in the ad hoc layer. That
is why the network capacity is independent of the maximum
hop count limit L. By (10) and (22), we can verify that the
maximum ad hoc network capacity is Θ( n

logn ) when α = 2.
Generally speaking, we have (29).

In case that limn→∞ q = ∞, if the number of base stations

m asymptotically grows slower than Θ( n
2
3

(logn)
1
3
), the network

capacity is maximized when Wa = W and Wc = 0, that

is, Λ∗ = Θ( n
2
3

(log n)
1
3
W ); otherwise, we have the maximum

network capacity when Wc = W while Wa = 0, that is, Λ∗ =
Θ(mW ).

We now consider the case that limn→∞ q < ∞. When
0 ≤ α < 2, if m asymptotically grows slower than

Θ( n
4−α
6−2α

(logn)
2−α
6−2α (n−q+1)

1
3−α

), we have the maximum network

capacity Λ∗ = Θ( n
4−α
6−2α

(log n)
2−α
6−2α (n−q+1)

1
3−α

W ); otherwise, the

maximum network capacity is denoted by Λ∗ = Θ(mW ).
When α ≥ 2, only if the number of base stations asymptoti-
cally grows faster than Θ( n

log n ), augmenting base stations can
play significant role in improving the scaling behavior of the
network capacity. (29) also implies that limiting the long-range
ad hoc flows can efficiently improve network capacity.

V. PERFORMANCE COMPARISON

In this section, we first compare our results with the
existing works. Our work applies the same routing policy,
the L-maximum hop count, as [3], and so we first compare
our results with those in [3]. In [3], the derived network
capacities are totally the same as our results in the case that
limn→∞ q = ∞, which are represented by (19) and (20).

Since our work applies the same traffic model as [12], we
also compare our conclusions with those in [12]. In [12], all the
flows are transmitted using ad hoc manner. In other words, L is
set large enough so that any flow is within L hops. According
[12], L grows asymptotically with ( n

log n )
1
2 . By (10), Nad =

α

N
et

w
or

k 
C

ap
ac

ity

Θ( n
logn )

Θ( n
2
3

log
1
3 n

)

Fig. 2. Effect of α Network Capacity.

Θ(n) for all possible α, which is true since all the flows are
transmitted in ad hoc manner. By (18) and (22), we have (30).

Λ0
ad =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

(
1

na
1
2 (n)

)
limn→∞ → ∞

Θ

(
n−q+1

n2a
1
2 (n)

)
q < ∞, 0 ≤ α < 2

Θ

(
n−q+1

n2a
α−1
2 (n)

)
q < ∞, 2 < α < 3

Θ

(
n−q+1
n2a(n)

)
q < ∞, α > 3

(30)

(30) is totally the same as the results derived by [12]. The
above analysis shows that our method to derive the hybrid
network capacity with the social traffic model is reasonable.
We consider a constant q, and Fig. 2 illustrates the maximum
network capacity with different α when applying the optimal
L. The figure is plotted by using a large constant n. We
can observe that the traffic model plays significant role on
network capacity, and therefore, studying network capacity
with the specific traffic model is important to realize the service
capacity provided by the network.

When α < 2, the network capacity grows initially when L
increases, and then reduces if L grows further. When L is too
small, more traffic are transmitted over cellular layer, such that
the ad hoc resources would not be fully utilized. When L is
larger, more collision would be introduced in ad hoc layer, such
that the network throughput would be reduced. Our analysis
shows the importance of the optimal routing policy on the
network capacity.

VI. CONCLUSION

The work study the capacity of hybrid wireless networks
with social traffic model, and derive the network capacity as a
function of number of nodes, number of base stations, traffic
model parameters, and routing policy L. Moreover, we identify
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Λ∗ = Λ∗
ad + Λc =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ

(
n

2
3

(logn)
1
3
Wa

)
+Θ

(
mWc

)
limn→∞ q = ∞

Θ

(
n

4−α
6−2α

(logn)
2−α
6−2α (n−q+1)

1
3−α

Wa

)
+Θ

(
mWc

)
limn→∞ q < ∞, 0 ≤ α < 2

Θ

(
n

lognWa

)
+Θ

(
mWc

)
limn→∞ q < ∞, α ≥ 2

(29)

the optimal routing policy L to maximize the network capacity.
In the future, we would consider that the source is allowed
to transmit to the base station with multiple hops due to the
transmitting power limitation. Moreover, analyzing the effect
of the social mobility model of users on network capacity is
still open.

APPENDIX

Detailed Derivation of Equation (9)

By (2) and (3), we have

P (ϑs = vk) =

∑
1≤i1,...,iq−1≤n,ij �=k d

−α
k d−α

i1
. . . d−α

iq−1

q
∑

1≤j1,...,jq≤n d
−α
j1

. . . d−α
jq

(31)

Let τ = (τ1, . . . , τn) represent (d−α
1 , . . . , d−α

n ),
υq,n(τ) =

∑
1≤i1≤i2≤...≤ip≤n τi1 . . . τip , and

υk
q,n−1(τ) = υq,n−1(τ1, . . . , τk−1, τk+1, . . . , τn). We then

have

P (ϑs = vk) =
d−α
k υk

q−1,n−1(τ)

qυq,n(τ)
(32)

(33)-(36) are borrowed from [12]. In (35), B1 and B2 are
constants. dk is the distance from a node in Al to s, and so
we have B1x

√
a(n) ≤ dk ≤ B2x

√
a(n), where x denotes

the hop count from the node to s. In (36), γ ≤ 1 and dmax

denotes the maximum distance between any two nodes in the
network.

{
P (ϑs = vk) ≥ d−α

k
υq−1,n(τ)−d−α

k υq−2,n(τ)

qυq,n(τ)

P (ϑs = vk) ≤ d−α
k

υq−1,n(τ)
qυq,n(τ)

(33)

υ1,n(τ)υq−1,n(τ)

qυq,n(τ)
= Θ(

n

n− q + 1
) (34)

{ ∑4x
l=1

∑
vk∈Al

d−α
k ≥ ∑4x

l=1

∑
vk∈Al

(B1x
√
a(n))−α∑4x

l=1

∑
vk∈Al

d−α
k ≤ ∑4x

l=1

∑
vk∈Al

(B2x
√
a(n))−α

(35)

υ1,n(τ) =
∑

vk
d−α
k

≡ ∫ γdmax√
a(n)

nx1−αdx

≡
⎧⎨
⎩

Θ(n) 0 ≤ α < 2

Θ(n ln a−
1
2 (n)) α = 2

Θ(na1−
α
2 (n)) α > 2

(36)

Since the probability that each node vk is located in the
subcell Al is a(n), we now calculate

∑L
x=1

∑4x
l=1

∑
vk∈Al

dαk
≡ na1−

α
2 (n)

∑L
x=1 x

1−α

≡ na1−
α
2 (n)

∫ L

1 x1−αdx

≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ

(
na1−

α
2 (n)L2−α

)
0 ≤ α < 2

Θ

(
n lnL

)
α = 2

Θ

(
na1−

α
2 (n)

)
α > 2

(37)

Pad =
∑L

x=1

∑4x
l=1

∑
vk∈Al

P (ϑs = vk)

≤ ∑L
x=1

∑4x
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)
qυq,n(τ) by(33)

=
υ1,n(τ)υq−1,n(τ)

qυq,n(τ)

∑L
x=1

∑4x
l=1

∑
vk∈Al

d−α
k

υ1,n(τ)

≡ Θ( n
n−q+1 )

∑L
x=1

∑4x
l=1

∑
vk∈Al

d−α
k

υ1,n(τ)
by(34)

≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Θ

(
n

n−q+1a
1−α

2 (n)L2−α

)
0 ≤ α < 2

Θ

(
n

n−q+1
lnL

ln a− 1
2 (n)

)
α = 2

Θ

(
n

n−q+1

)
α > 2

(38)

With the similar method, we calculate

υq−2,n(τ)
qυq,n(τ)

∑L
x=1

∑4x
l=1

∑
vk∈Al

d−2α
k

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

(
(q−1)n

(n−q+1)(n−q+2)a
1−α(n)L2−2α

)
0 ≤ α < 1

Θ

(
(q−1)n

(n−q+1)(n−q+2) lnL

)
α = 1

Θ

(
(q−1)n

(n−q+1)(n−q+2)a
1−α(n)

)
1 < α < 2

Θ

(
(q−1)n

(n−q+1)(n−q+2) ln2 a− 1
2 (n)

a−1(n)

)
α = 2

Θ

(
(q−1)n

(n−q+1)(n−q+2)a(n)

)
α > 2

(39)

We now consider the case of 0 ≤ α < 1. In
order to compare the order of n

n−q+1a
1−α

2 (n)L2−α

with that of (q−1)n
(n−q+1)(n−q+2)a

1−α(n)L2−2α, we

calculate limn→∞
n

n−q+1 a
1−α

2 (n)L2−α

(q−1)n
(n−q+1)(n−q+2)

a1−α(n)L2−2α
= ∞

based on a(n) = Θ( logn
n ). Thus, we know that the
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order of n
n−q+1a

1−α
2 (n)L2−α is higher than that of

(q−1)n
(n−q+1)(n−q+2)a

1−α(n)L2−2α. With the same method,

we can verify that
∑D

x=1

∑4x
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)
qυq,n(τ)

=

Ω(
∑D

x=1

∑4x
l=1

∑
vk∈Al

d−2α
k

υq−2,n(τ)
qυq,n(τ) ). Therefore,

Pad =
∑L

x=1

∑4x
l=1

∑
vk∈Al

P (ϑs = vk)

≥ ∑L
x=1

∑4x
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)−d−α
k υq−2,n(τ)

qυq,n(τ)

≡ ∑L
x=1

∑4x
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)
qυq,n(τ)

(40)

Combining (38) and (40), we have (9).

Detailed Derivation of Equation (16)

With the same method as above, we have (41) and (42).

∑L
x=1 x

∑4x
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)
qυq,n(τ)

≡ n
n−q+1

∑L
x=1

∑4x
l=1

∑
vk∈Al

d−α
k

υ1,n(τ)
by(34)

≡ n
n−q+1

1
υ1,n(τ)

na1−
α
2 (n)

∑L
x=1 x

2−α by(35)

≡ n
n−q+1

1
υ1,n(τ)

na1−
α
2 (n)

∫ L

1
x2−αdx

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

(
n

n−q+1a
1−α

2 (n)L3−α

)
0 ≤ α < 2

Θ

(
n

n−q+1
L

ln a− 1
2 (n)

)
α = 2

Θ

(
n

n−q+1L
3−α

)
2 < α < 3

Θ

(
n

n−q+1 lnL

)
α = 3

Θ

(
n

n−q+1

)
α > 3

by(36)

(41)

∑L
x=1 x

∑4x
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)
qυq,n(τ)

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

(
(q−1)n

(n−q+1)(n−q+2)a
1−α(n)L3−2α

)
0 ≤ α < 3

2

Θ

(
(q−1)n

(n−q+1)(n−q+2)a
− 1

2 (n) lnL

)
α = 3

2

Θ

(
(q−1)n

(n−q+1)(n−q+2)a
1−α(n)

)
3
2 < α < 2

Θ

(
(q−1)n

(n−q+1)(n−q+2) ln2(a(n)−
1
2 )
a−1(n)

)
α = 2

Θ

(
(q−1)n

(n−q+1)(n−q+2)a(n)

)
α > 2

(42)

By (13), (14), and (33) E[hi] is less than
1

Pad

∑L
x=1 x

∑4x
l=1

∑
vk∈Al

d−α
k υq−1,n(τ)

qυq,n(τ) , while larger than
1

Pad

∑L
x=1 x

∑4x
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)−d−α
k υq−2,n(τ)

qυq,n(τ) . Since∑L
x=1 x

∑4x
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)
qυq,n(τ) has the higher order

than
∑L

x=1 x
∑4x

l=1

∑
vk∈Al

d−α
k

d−α
k υq−2,n(τ)

qυq,n(τ) , we have

E[hi] ≡ 1

Pad

L∑
x=1

x

4x∑
l=1

∑
vk∈Al

d−α
k

υq−1,n(τ)

qυq,n(τ)
(43)

By (41) and (9), we have (16).
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