29 research outputs found

    Atherogenic Lipid Stress Induces Platelet Hyperactivity Through CD36-Mediated Hyposensitivity To Prostacyclin-; The Role Of Phosphodiesterase 3A

    Get PDF
    Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signalling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidised low density lipoproteins (oxLDL) associated with dyslipidaemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signalling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a PDE-insensitive cAMP analogue, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of phosphodiesterase 3A (PDE3A), leading to diminished cAMP signalling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signalling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidised phospholipids and ablated in CD36-/- murine platelets. The injection of oxLDL into wild type mice strongly promoted FeCl3 induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidaemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2 ex vivo and diminished PKA signalling. In contrast, platelet sensitivity to a PDE-resistant cAMP analogue remained normal. Genetic deletion of CD36, protected dyslipidaemic animals from PGI2 hyposensitivity and restored PKA signalling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signalling.  

    Platelet function following induced hypoglycaemia in type 2 diabetes

    Get PDF
    Aim: Strict glycaemic control has been associated with an increased mortality rate in subjects with type 2 diabetes (T2DM). Here we examined platelet function immediately and 24 hours following induced hypoglycaemia in people with type 2 diabetes compared to healthy age-matched controls. Methods: Hyperinsulinaemic clamps reduced blood glucose to 2.8 mmol/L (50 mg/dl) for 1 hour. Sampling at baseline; euglycaemia 5 mmol/L (90 mg/dl); hypoglycaemia; and at 24 post clamp were undertaken. Platelet function was measured by whole blood flow cytometry. Results: 10 subjects with T2DM and 8 controls were recruited. Platelets from people with T2DM showed reduced sensitivity to prostacyclin (PGI2, 1 nM) following hypoglycaemia. The ability of PGI2 to inhibit platelet activation was significantly impaired at 24 hours compared to baseline in the T2DM group. Here, inhibition of fibrinogen binding was 29.5% (10.3–43.8) compared to 50.8% (36.8–61.1), (P < 0.05), while inhibition of P-selectin expression was 32% (16.1–47.6) vs. 54.4% (42.5–67.5) (P < 0.05). No significant changes in platelet function were noted in controls. Conclusion: Induced hypoglycaemia in T2DM enhances platelet hyperactivity through impaired sensitivity to prostacyclin at 24 hours

    Bayesian Fit of Exclusive bsˉb \to s \bar\ell\ell Decays: The Standard Model Operator Basis

    Full text link
    We perform a model-independent fit of the short-distance couplings C7,9,10C_{7,9,10} within the Standard Model set of bsγb\to s\gamma and bsˉb\to s\bar\ell\ell operators. Our analysis of BKγB \to K^* \gamma, BK()ˉB \to K^{(*)} \bar\ell\ell and BsμˉμB_s \to \bar\mu\mu decays is the first to harness the full power of the Bayesian approach: all major sources of theory uncertainty explicitly enter as nuisance parameters. Exploiting the latest measurements, the fit reveals a flipped-sign solution in addition to a Standard-Model-like solution for the couplings CiC_i. Each solution contains about half of the posterior probability, and both have nearly equal goodness of fit. The Standard Model prediction is close to the best-fit point. No New Physics contributions are necessary to describe the current data. Benefitting from the improved posterior knowledge of the nuisance parameters, we predict ranges for currently unmeasured, optimized observables in the angular distributions of BK(Kπ)ˉB\to K^*(\to K\pi)\,\bar\ell\ell.Comment: 42 pages, 8 figures; v2: Using new lattice input for f_Bs, considering Bs-mixing effects in BR[B_s->ll]. Main results and conclusion unchanged, matches journal versio

    Prostacyclin reverses platelet stress fibre formation causing platelet aggregate instability

    Get PDF
    Prostacyclin (PGI2) modulates platelet activation to regulate haemostasis. Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation. It was hypothesised that PGI2 could reverse platelet spreading by actin cytoskeletal modulation, leading to reduced capability of platelet aggregates to withstand a high shear environment. Our data demonstrates that post-flow of PGI2 over activated and spread platelets on fibrinogen, identified a significant reduction in platelet surface area under high shear. Exploration of the molecular mechanisms underpinning this effect revealed that PGI2 reversed stress fibre formation in adherent platelets, reduced platelet spreading, whilst simultaneously promoting actin nodule formation. The effects of PGI2 on stress fibres were mimicked by the adenylyl cyclase activator forskolin and prevented by inhibitors of protein kinase A (PKA). Stress fibre formation is a RhoA dependent process and we found that treatment of adherent platelets with PGI2 caused inhibitory phosphorylation of RhoA, reduced RhoA GTP-loading and reversal of myosin light chain phosphorylation. Phospho-RhoA was localised in actin nodules with PKA type II and a number of other phosphorylated PKA substrates. This study demonstrates that PGI2 can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling thrombosis

    Remodeling the Proteostasis Network to Rescue Glucocerebrosidase Variants by Inhibiting ER-Associated Degradation and Enhancing ER Folding

    Get PDF
    Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition

    Antigen-induced IL-10+ regulatory T cells are independent of CD25+ regulatory cells for their growth, differentiation and function

    No full text
    Recent studies have emphasized the importance of T cells with regulatory/suppressor properties in controlling autoimmune diseases. A number of different types of regulatory T cells have been described with the best characterized being the CD25(+) population. In addition, it has been shown that regulatory T cells can be induced by specific Ag administration. In this study, we investigate the relationship between peptide-induced, CD4(+) regulatory T cells and naturally occurring CD4(+)CD25(+) cells derived from the Tg4 TCR-transgenic mouse. Peptide-induced cells were FoxP3(−) and responded to Ag by secreting IL-10, whereas CD25(+) cells failed to secrete this cytokine. Both cell types were able to suppress the proliferation of naive lymphocytes in vitro although with distinct activation sensitivities. Depletion of CD25(+) cells did not affect the suppressive properties of peptide-induced regulators. Furthermore, peptide-induced regulatory/suppressor T cells could be generated in RAG(−/−), TCR-transgenic mice that do not spontaneously generate CD25(+) regulatory cells. These results demonstrate that these natural and induced regulatory cells fall into distinct subsets

    Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells

    Get PDF
    Regulation of the immune response to self- and foreign antigens is vitally important for limiting immune pathology associated with both infections and hypersensitivity conditions. Control of autoimmune conditions can be reinforced by tolerance induction with peptide epitopes, but the mechanism is not currently understood. Repetitive intranasal administration of soluble peptide induces peripheral tolerance in myelin basic protein (MBP)–specific TCR transgenic mice. This is characterized by the presence of anergic, interleukin (IL)-10–secreting CD4(+) T cells with regulatory function (IL-10 T reg cells). The differentiation pathway of peptide-induced IL-10 T reg cells was investigated. CD4(+) T cells became anergic after their second encounter with a high-affinity MBP peptide analogue. Loss of proliferative capacity correlated with a switch from the Th1-associated cytokines IL-2 and interferon (IFN)-γ to the regulatory cytokine IL-10. Nevertheless, IL-10 T reg cells retained the capacity to produce IFN-γ and concomitantly expressed T-bet, demonstrating their Th1 origin. IL-10 T reg cells suppressed dendritic cell maturation, prevented Th1 cell differentiation, and thereby created a negative feedback loop for Th1-driven immune pathology. These findings demonstrate that Th1 responses can be self-limiting in the context of peripheral tolerance to a self-antigen
    corecore