42 research outputs found

    Residual effects of natural Zn chelates on navy bean response, Zn leaching and soil status

    Get PDF
    greenhouse experiment was conducted on weakly acidic and calcareous soils to evaluate the aging and residual effects of three natural organic Zn chelates [Zn-ethylenediaminedisuccinate (Zn-EDDS), Zn-polyhydroxyphenylcarboxylate and Zn-aminelignosulfonate] each administered in a single application to a first navy bean (Phaseolus vulgaris L.) crop at several different Zn application rates. In a second navy bean crop, we determined the following parameters: the extent of Zn leaching, the amount of available Zn remaining in soils, the amount of easily leachable Zn, the size of Zn fractions in soils, the pH and redox potential, the dry matter yield, and the soluble and total Zn concentrations in plants. The residual effect after 2 years of Zn fertilization mainly depended on the aging effect of Zn chelates and losses due to Zn leaching. The data relating to the evolution from the first to the second crop showed that the aging effect was noticeable in the calcareous soil. In the latter soil, the Zn-S,S-EDDS treatments showed greater decreases in the Zn uptake by plants than the other Zn treatments and the greatest Zn uptake by plants occurred when Zn was applied as Zn-aminelignosulfonate (10 mg Zn kg−1 rate, 6.85 mg Zn per lysimeter; 5 mg Zn kg−1 rate, 3.36 mg Zn per lysimeter). In contrast, in the calcareous soil, the maximum amount of Zn uptake, for the three chelates was 0.82 mg Zn per lysimeter. Consequently, a further application of Zn would be needed to prevent Zn deficiencies in the plants of a subsequent crop. The behaviour of the pH and Eh parameters in the soils and leachates did not depend on the natural Zn sources applied. In this study, the easily leachable Zn estimated by BaCl2 extraction was not adequate to predict Zn leaching from the soils in subsequent crops

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
    corecore