152 research outputs found

    Plasma concentration of Propionibacterium acnes antibodies and prostate cancer risk: results from an Australian population-based case–control study

    Get PDF
    Background:Recent studies in prostatic tissue suggest that Propionibacterium acnes (P. acnes), a bacterium associated with acne that normally lives on the skin, is the most prevalent bacterium in the prostate and in men with benign prostatic hyperplasia. Its prevalence is higher in samples from patients subsequently diagnosed with prostate cancer. The aim of our study was to test whether circulating levels of P. acnes antibodies are associated with prostate cancer risk and tumour characteristics using plasma samples from a population-based case-control study.Methods:We measured plasma concentration of P. acnes antibodies for 809 cases and 584 controls using a recently developed ELISA assay. We compared antibody titres between cases and controls using unconditional logistic regression adjusted for batch and variables associated with the study design (i.e., age, year of selection and centre). The primary analysis included P. acnes titres in the model as a dichotomous variable using the median value for controls as the cut-off value.Results:P. acnes antibody titres for both cases and controls ranged from 1: 16 (i.e., low concentration) to 1: 65 536 (i.e., high concentration; median value1: 1024). The odds ratio for prostate cancer associated with titres at or above the median value was 0.73 (95% CI 0.58-0.91, P0.005). The association appeared to be particularly strong for advanced prostate cancer (AJCC Stage grouping III-IV) for which the odds ratio was 0.59 (95% CI 0.43-0.81, P0.001) but there was insufficient evidence that the association differed by tumour stage (p heterogeneity0.07).Conclusion: These results need to be confirmed in prospective studies but they are consistent with the hypothesis that P. acnes has a role in prostate cancer. © 2010 Cancer Research UK All rights reserved

    Detection of Murine Leukemia Virus or Mouse DNA in Commercial RT-PCR Reagents and Human DNAs

    Get PDF
    The xenotropic murine leukemia virus (MLV)-related viruses (XMRV) have been reported in persons with prostate cancer, chronic fatigue syndrome, and less frequently in blood donors. Polytropic MLVs have also been described in persons with CFS and blood donors. However, many studies have failed to confirm these findings, raising the possibility of contamination as a source of the positive results. One PCR reagent, Platinum Taq polymerase (pol) has been reported to contain mouse DNA that produces false-positive MLV PCR results. We report here the finding of a large number of PCR reagents that have low levels of MLV sequences. We found that recombinant reverse-transcriptase (RT) enzymes from six companies derived from either MLV or avian myeloblastosis virus contained MLV pol DNA sequences but not gag or mouse DNA sequences. Sequence and phylogenetic analysis showed high relatedness to Moloney MLV, suggesting residual contamination with an RT-containing plasmid. In addition, we identified contamination with mouse DNA and a variety of MLV sequences in commercially available human DNAs from leukocytes, brain tissues, and cell lines. These results identify new sources of MLV contamination and highlight the importance of careful pre-screening of commercial specimens and diagnostic reagents to avoid false-positive MLV PCR results

    No Evidence of Murine Leukemia Virus-Related Viruses in Live Attenuated Human Vaccines

    Get PDF
    The association of xenotropic murine leukemia virus (MLV)-related virus (XMRV) in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents.All eight live attenuated vaccines, including Japanese encephalitis virus (JEV) (SA-14-14-2), varicella (Varivax), measles, mumps, and rubella (MMR-II), measles (Attenuvax), rubella (Meruvax-II), rotavirus (Rotateq and Rotarix), and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells.We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans

    No Association of Xenotropic Murine Leukemia Virus-Related Viruses with Prostate Cancer

    Get PDF
    BACKGROUND: The association of the xenotropic murine leukemia virus-related virus (XMRV) with prostate cancer continues to receive heightened attention as studies report discrepant XMRV prevalences ranging from zero up to 23%. It is unclear if differences in the diagnostic testing, disease severity, geography, or other factors account for the discordant results. We report here the prevalence of XMRV in a population with well-defined prostate cancers and RNase L polymorphism. We used broadly reactive PCR and Western blot (WB) assays to detect infection with XMRV and related murine leukemia viruses (MLV). METHODOLOGY/PRINCIPAL FINDINGS: We studied specimens from 162 US patients diagnosed with prostate cancer with a intermediate to advanced stage (Gleason Scores of 5-10; moderate (46%) poorly differentiated tumors (54%)). Prostate tissue DNA was tested by PCR assays that detect XMRV and MLV variants. To exclude contamination with mouse DNA, we also designed and used a mouse-specific DNA PCR test. Detailed phylogenetic analysis was used to infer evolutionary relationships. RNase L typing showed that 9.3% were homozygous (QQ) for the R462Q RNase L mutation, while 45.6% and 45.1% were homozygous or heterozygous, respectively. Serologic testing was performed by a WB test. Three of 162 (1.9%) prostate tissue DNA were PCR-positive for XMRV and had undetectable mouse DNA. None was homozygous for the QQ mutation. Plasma from all three persons was negative for viral RNA by RT-PCR. All 162 patients were WB negative. Phylogenetic analysis inferred a distinct XMRV. CONCLUSIONS AND THEIR SIGNIFICANCE: We found a very low prevalence of XMRV in prostate cancer patients. Infection was confirmed by phylogenetic analysis and absence of contaminating mouse DNA. The finding of undetectable antibodies and viremia in all three patients may reflect latent infection. Our results do not support an association of XMRV or MLV variants with prostate cancer

    Multiple Sources of Contamination in Samples from Patients Reported to Have XMRV Infection

    Get PDF
    Xenotropic murine leukemia virus (MLV)-related retrovirus (XMRV) was reported to be associated with prostate cancer by Urisman, et al. in 2006 and chronic fatigue syndrome (CFS) by Lombardi, et al. in 2009. To investigate this association, we independently evaluated plasma samples from 4 patients with CFS reported by Lombardi, et al. to have XMRV infection and from 5 healthy controls reported to be XMRV uninfected. We also analyzed viral sequences obtained from supernatants of cell cultures found to contain XMRV after coculture with 9 clinical samples from 8 patients. A qPCR assay capable of distinguishing XMRV from endogenous MLVs showed that the viral sequences detected in the CFS patient plasma behaved like endogenous MLVs and not XMRV. Single-genome sequences (N = 89) from CFS patient plasma were indistinguishable from endogenous MLVs found in the mouse genome that are distinct from XMRV. By contrast, XMRV sequences were detected by qPCR in 2 of the 5 plasma samples from healthy controls (sequencing of the qPCR product confirmed XMRV not MLV). Single-genome sequences (N = 234) from the 9 culture supernatants reportedly positive for XMRV were indistinguishable from XMRV sequences obtained from 22Rv1 and XMRV-contaminated 293T cell-lines. These results indicate that MLV DNA detected in the plasma samples from CFS patients evaluated in this study was from contaminating mouse genomic DNA and that XMRV detected in plasma samples from healthy controls and in cultures of patient samples was due to cross-contamination with XMRV (virus or nucleic acid)

    Current and Emerging Treatment Options for Castration-Resistant Prostate Cancer: A Focus on Immunotherapy

    Get PDF
    BACKGROUND: Castration-resistant prostate cancer is a disease with limited treatment options. However, the ongoing elucidation of the mechanisms underlying this disease continues to support the development of not only novel agents, but also innovative approaches. Among these therapies, immunotherapy has emerged as a promising strategy. DESIGN: This review article summarizes the most recent data from investigations of immunotherapies in castration-resistant prostate cancer (literature and congress searches current as of August 2011). RESULTS: Immunotherapeutic strategies such as passive immunization, vaccines, and particularly checkpoint blockade have demonstrated some efficacy as single agents. Elucidation of effective combinations of agents and drug regimens is ongoing but will require continued careful investigation, including the standardization of surrogate endpoints in clinical trials. CONCLUSIONS: It is hypothesized that the combination of immunotherapeutic agents with traditional and novel chemotherapeutics will potentiate the efficacy of the chemotherapeutics while maintaining manageable toxicity

    Susceptibility of Human Lymphoid Tissue Cultured ex vivo to Xenotropic Murine Leukemia Virus-Related Virus (XMRV) Infection

    Get PDF
    BACKGROUND: Xenotropic murine leukemia virus-related virus (XMRV) was generated after a recombination event between two endogenous murine leukemia viruses during the production of a prostate cancer cell line. Although the associations of the XMRV infection with human diseases appear unlikely, the XMRV is a retrovirus of undefined pathogenic potential, able to replicate in human cells in vitro. Since recent studies using animal models for infection have yielded conflicting results, we set out an ex vivo model for XMRV infection of human tonsillar tissue to determine whether XMRV produced by 22Rv1 cells is able to replicate in human lymphoid organs. Tonsil blocks were infected and infection kinetics and its pathogenic effects were monitored RESULTS: XMRV, though restricted by APOBEC, enters and integrates into the tissue cells. The infection did not result in changes of T or B-cells, immune activation, nor inflammatory chemokines. Infectious viruses could be recovered from supernatants of infected tonsils by reinfecting DERSE XMRV indicator cell line, although these supernatants could not establish a new infection in fresh tonsil culture, indicating that in our model, the viral replication is controlled by innate antiviral restriction factors. CONCLUSIONS: Overall, the replication-competent retrovirus XMRV, present in a high number of laboratories, is able to infect human lymphoid tissue and produce infectious viruses, even though they were unable to establish a new infection in fresh tonsillar tissue. Hereby, laboratories working with cell lines producing XMRV should have knowledge and understanding of the potential biological biohazardous risks of this virus
    • …
    corecore