27 research outputs found

    How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot

    Get PDF
    Increasingly, spatial geochemical zonation, present as geographically distinct, subparallel trends, is observed along hotspot tracks, such as Hawaii and the Galapagos. The origin of this zonation is currently unclear. Recently zonation was found along the last B70 Myr of the Tristan-Gough hotspot track. Here we present new Sr–Nd–Pb–Hf isotope data from the older parts of this hotspot track (Walvis Ridge and Rio Grande Rise) and re-evaluate published data from the Etendeka and Parana flood basalts erupted at the initiation of the hotspot track. We show that only the enriched Gough, but not the less-enriched Tristan, component is present in the earlier (70–132 Ma) history of the hotspot. Here we present a model that can explain the temporal evolution and origin of plume zonation for both the Tristan-Gough and Hawaiian hotspots, two end member types of zoned plumes, through processes taking place in the plume sources at the base of the lower mantle

    HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier?

    Get PDF
    The acquired immunodeficiency syndrome (AIDS) is accompanied by a significant increase in the incidence of neoplasms. Several causative agents have been proposed for this phenomenon. These include immunodeficiency and oncogenic DNA viruses and the HIV-1 protein Tat. Cancer in general is closely linked to genomic instability and DNA repair mechanisms. The latter maintains genomic stability and serves as a cellular anti-cancer barrier. Defects in DNA repair pathway are associated with carcinogenesis

    Scientific assessment of the use of sugars as cigarette tobacco ingredients: A review of published and other publicly available studies

    Get PDF
    Sugars, such as sucrose or invert sugar, have been used as tobacco ingredients in American-blend cigarettes to replenish the sugars lost during curing of the Burley component of the blended tobacco in order to maintain a balanced flavor. Chemical-analytical studies of the mainstream smoke of research cigarettes with various sugar application levels revealed that most of the smoke constituents determined did not show any sugar-related changes in yields (per mg nicotine), while ten constituents were found to either increase (formaldehyde, acrolein, 2-butanone, isoprene, benzene, toluene, benzo[k]fluoranthene) or decrease (4-aminobiphenyl, N-nitrosodimethylamine, N-nitrosonornicotine) in a statistically significant manner with increasing sugar application levels. Such constituent yields were modeled into constituent uptake distributions using simulations of nicotine uptake distributions generated on the basis of published nicotine biomonitoring data, which were multiplied by the constituent/nicotine ratios determined in the current analysis. These simulations revealed extensive overlaps for the constituent uptake distributions with and without sugar application. Moreover, the differences in smoke composition did not lead to relevant changes in the activity in in vitro or in vivo assays. The potential impact of using sugars as tobacco ingredients was further assessed in an indirect manner by comparing published data from markets with predominantly American-blend or Virginia-type (no added sugars) cigarettes. No relevant difference was found between these markets for smoking prevalence, intensity, some markers of dependence, nicotine uptake, or mortality from smoking-related lung cancer and chronic obstructive pulmonary disease. In conclusion, thorough examination of the data available suggests that the use of sugars as ingredients in cigarette tobacco does not increase the inherent risk and harm of cigarette smoking

    Examination of Organ Toxicity

    No full text

    Messenger RNA Sequence Rather than Protein Sequence Determines the Level of Self-synthesis and Antigen Presentation of the EBV-encoded Antigen, EBNA1

    Get PDF
    peer-reviewedViruses establishing persistent latent infections have evolved various mechanisms to avoid immune surveillance. The Epstein-Barr virus-encoded nuclear antigen, EBNA1, expressed in all EBV-associated malignancies, modulates its own protein levels at quantities sufficient to maintain viral infection but low enough so as to minimize an immune response by the infected host cell. This evasion mechanism is regulated through an internal purine-rich mRNA repeat sequence encoding glycine and alanine residues. In this study we assess the impact of the repeat's nucleotide versus peptide sequence on inhibiting EBNA1 self-synthesis and antigen presentation. We demonstrate that altered peptide sequences resulting from frameshift mutations within the repeat do not alleviate the immune-evasive function of EBNA1, suggesting that the repetitive purine-rich mRNA sequence itself is responsible for inhibiting EBNA1 synthesis and subsequent poor immunogenicity. Our comparative analysis of the mRNA sequences of the corresponding repeat regions of different gammaherpesvirus maintenance homologues to EBNA1 highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. These studies demonstrate the importance of gammaherpesvirus purine-rich mRNA repeat sequences on antigenic epitope generation and evasion from T-cell mediated immune control, suggesting novel approaches to prevention and treatment of latent infection by this class of virus.National Health & Medical Research Council (NH&MRC) Canberra, Australia (#496684 APP1005091); NH&MRC Career Development Award Research Fellowship (#496712
    corecore