1,455 research outputs found

    First detailed survey of waterbirds in Tirunelveli and Tuticorin districts, Tamil Nadu, India

    Get PDF
    The semi-arid districts of Tirunelveli and Tuticorin in the southern Indian state of Tamil Nadu consist of numerous wetlands in the form of irrigation tanks, interconnected by an ancient network of canals, and fed by the rivers originating from the Western Ghats. While these irrigation tanks have socio-economic and cultural significance, very little is known of their ecological importance. These tanks have the potential to harbor good populations of resident and wintering waterbirds but no studies have been done to confirm this. A survey was carried out in 230 irrigation tanks of various sizes in the two districts from November 2008 to January 2011. A total of 83 waterbird species were recorded. Indian Pond Heron Ardeola grayii occurred in most of the surveyed tanks. Large concentrations of wintering waterfowl such as Eurasian Wigeon Anas penelope, Northern Pintail Anas acuta, Garganey Anas querquedula were recorded in tanks closer to the coast. Based on our survey, six sites with large waterbird concentrations have been identified, one of which is Vagaikulam, an active heronry currently under threat from tree felling. These sites along with associated wetlands are important for the long term conservation of waterbirds in the region

    Cloning and expression analysis of two distinct HIF-alpha isoforms – gcHIF-1alpha and gcHIF-4alpha – from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus

    Get PDF
    BACKGROUND: Hypoxia-inducible factors (HIFs) are involved in adaptive and survival responses to hypoxic stress in mammals. In fish, very little is known about the functions of HIFs. RESULTS: We have cloned and characterized two distinct HIF-alpha cDNAs – gcHIF-1alpha and gcHIF-4alpha – from the hypoxia-tolerant grass carp. The deduced gcHIF-1alpha protein is highly similar to the HIF-1alphas (57–68%) from various vertebrate species, while gcHIF-4alpha is a novel isoform, and shows an equivalent degree of amino acid identity (41–47%) to the HIF-1alpha, HIF-2alpha and HIF-3alpha proteins so far described. Parsimony analysis indicated that gcHIF-4alpha is most closely related to the HIF-3alpha proteins. Northern blot analysis showed that mRNA levels of gcHIF-1alpha and gcHIF-4alpha differ substantially under normoxic and hypoxic conditions, while Western blot studies demonstrated that the endogenous protein levels for both gcHIF-1alpha and gcHIF-4alpha are similarly responsive to hypoxia. Our findings suggest that both gcHIF-1alpha and gcHIF-4alpha are differentially regulated at the transcriptional and translational levels. HRE-luciferase reporter assays show that both proteins function as transcription activators and play distinct roles in modulating the hypoxic response in grass carp. CONCLUSION: There are at least two distinct HIF-alpha isoforms – gcHIF-1alpha and gcHIF-4alpha – in the hypoxia-tolerant grass carp, which are differentially expressed and regulated in different fish organs in response to hypoxic stress. Overall, the results suggest that unique molecular mechanisms operate through these two HIF-alpha isoforms, which underpin the hypoxic response in the hypoxia-tolerant grass carp

    Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma) model

    Get PDF
    BACKGROUND: Current understanding on the relationships between hypoxia, hypoxia-inducible factor-1 (HIF-1) and telomerase reverse transcriptase (TERT) gene expression are largely based on in vitro studies in human cancer cells. Although several reports demonstrated HIF-1- mediated upregulation of the human TERT gene under hypoxia, conflicting findings have also been reported. Thus far, it remains uncertain whether these findings can be directly extrapolated to non-tumor tissues in other whole animal systems in vivo. While fish often encounter environmental hypoxia, the in vivo regulation of TERT by hypoxia in non-neoplastic tissues of fish remains virtually unknown. RESULTS: The adult marine medaka (Oryzias melastigma) was employed as a model fish in this study. We have cloned and characterized a 3261-bp full-length TERT cDNA, omTERT, which encodes a protein of 1086 amino acids. It contains all of the functional motifs that are conserved in other vertebrate TERTs. Motif E is the most highly conserved showing 90.9–100% overall identity among the fish TERTs and 63.6% overall identity among vertebrates. Analysis of the 5'-flanking sequence of the omTERT gene identified two HRE (hypoxia-responsive element; nt. – 283 and – 892) cores. Overexpression of the HIF-1α induced omTERT promoter activity as demonstrated using transient transfection assays. The omTERT gene is ubiquitously expressed in fish under normoxia, albeit at varying levels, where highest expression was observed in gonads and the lowest in liver. In vivo expression of omTERT was significantly upregulated in testis and liver in response to hypoxia (at 96 h and 48 h, respectively), where concomitant induction of the omHIF-1α and erythropoietin (omEpo) genes was also observed. In situ hybridization analysis showed that hypoxic induction of omTERT mRNA was clearly evident in hepatocytes in the caudal region of liver and in spermatogonia-containing cysts in testis. CONCLUSION: This study demonstrates for the first time, hypoxic regulation of TERT expression in vivo in a whole fish system. Our findings support the notion that hypoxia upregulates omTERT expression via omHIF-1 in non-neoplastic fish liver and testis in vivo. Overall, the structure and regulation of the TERT gene is highly conserved in vertebrates from fish to human

    External sources of clean technology: evidence from the clean development mechanism

    Get PDF
    New technology is fundamental to sustainable development. However, inventors from industrialized countries often refuse technology transfer because they worry about reverse-engineering. When can clean technology transfer succeed? We develop a formal model of the political economy of North–South technology transfer. According to the model, technology transfer is possible if (1) the technology in focus has limited global commercial potential or (2) the host developing country does not have the capacity to absorb new technologies for commercial use. If both conditions fail, inventors from industrialized countries worry about the adverse competitiveness effects of reverse-engineering, so technology transfer fails. Data analysis of technology transfer in 4,894 projects implemented under the Kyoto Protocol’s Clean Development Mechanism during the 2004–2010 period provides evidence in support of the model

    Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

    Full text link
    Orbital physics plays a significant role for a vast number of important phenomena in complex condensed matter systems such as high-Tc_c superconductivity and unconventional magnetism. In contrast, phenomena in superfluids -- especially in ultracold quantum gases -- are commonly well described by the lowest orbital and a real order parameter. Here, we report on the observation of a novel multi-orbital superfluid phase with a {\it complex} order parameter in binary spin mixtures. In this unconventional superfluid, the local phase angle of the complex order parameter is continuously twisted between neighboring lattice sites. The nature of this twisted superfluid quantum phase is an interaction-induced admixture of the p-orbital favored by the graphene-like band structure of the hexagonal optical lattice used in the experiment. We observe a second-order quantum phase transition between the normal superfluid (NSF) and the twisted superfluid phase (TSF) which is accompanied by a symmetry breaking in momentum space. The experimental results are consistent with calculated phase diagrams and reveal fundamentally new aspects of orbital superfluidity in quantum gas mixtures. Our studies might bridge the gap between conventional superfluidity and complex phenomena of orbital physics.Comment: 5 pages, 4 figure

    Deep Sequencing of Small RNAs in Tomato for Virus and Viroid Identification and Strain Differentiation

    Get PDF
    Small RNAs (sRNA), including microRNAs (miRNA) and small interfering RNAs (siRNA), are produced abundantly in plants and animals and function in regulating gene expression or in defense against virus or viroid infection. Analysis of siRNA profiles upon virus infection in plant may allow for virus identification, strain differentiation, and de novo assembly of virus genomes. In the present study, four suspected virus-infected tomato samples collected in the U.S. and Mexico were used for sRNA library construction and deep sequencing. Each library generated between 5–7 million sRNA reads, of which more than 90% were from the tomato genome. Upon in-silico subtraction of the tomato sRNAs, the remaining highly enriched, virus-like siRNA pools were assembled with or without reference virus or viroid genomes. A complete genome was assembled for Potato spindle tuber viroid (PSTVd) using siRNA alone. In addition, a near complete virus genome (98%) also was assembled for Pepino mosaic virus (PepMV). A common mixed infection of two strains of PepMV (EU and US1), which shared 82% of genome nucleotide sequence identity, also could be differentially assembled into their respective genomes. Using de novo assembly, a novel potyvirus with less than 60% overall genome nucleotide sequence identity to other known viruses was discovered and its full genome sequence obtained. Taken together, these data suggest that the sRNA deep sequencing technology will likely become an efficient and powerful generic tool for virus identification in plants and animals

    An approach to trial design and analysis in the era of non-proportional hazards of the treatment effect

    Get PDF
    Background: Most randomized controlled trials with a time-to-event outcome are designed and analysed under the proportional hazards assumption, with a target hazard ratio for the treatment effect in mind. However, the hazards may be non-proportional. We address how to design a trial under such conditions, and how to analyse the results. Methods: We propose to extend the usual approach, a logrank test, to also include the Grambsch-Therneau test of proportional hazards. We test the resulting composite null hypothesis using a joint test for the hazard ratio and for time-dependent behaviour of the hazard ratio. We compute the power and sample size for the logrank test under proportional hazards, and from that we compute the power of the joint test. For the estimation of relevant quantities from the trial data, various models could be used; we advocate adopting a pre-specified flexible parametric survival model that supports time-dependent behaviour of the hazard ratio. Results: We present the mathematics for calculating the power and sample size for the joint test. We illustrate the methodology in real data from two randomized trials, one in ovarian cancer and the other in treating cellulitis. We show selected estimates and their uncertainty derived from the advocated flexible parametric model. We demonstrate in a small simulation study that when a treatment effect either increases or decreases over time, the joint test can outperform the logrank test in the presence of both patterns of non-proportional hazards. Conclusions: Those designing and analysing trials in the era of non-proportional hazards need to acknowledge that a more complex type of treatment effect is becoming more common. Our method for the design of the trial retains the tools familiar in the standard methodology based on the logrank test, and extends it to incorporate a joint test of the null hypothesis with power against non-proportional hazards. For the analysis of trial data, we propose the use of a pre-specified flexible parametric model that can represent a time-dependent hazard ratio if one is present

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    Allo-HSCT in transplant-naive patients with Hodgkin lymphoma: a single-arm, multicenter study

    Get PDF
    We evaluated the role of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in transplant-naïve patients with relapsed/refractory Hodgkin lymphoma (HL) who failed to attain metabolic complete response (mCR) to 1 to 2 lines of salvage chemotherapyThose with residual but nonprogressive disease assessed by positron emission tomography/computed tomography scanning were eligible. An additional 1 to 2 cycles of salvage therapy were permissible in those with progressive disease or when required to bridge to allo-HSCT, with additional imaging at baseline before transplantation. Conditioning consisted of carmustine, etoposide, cytarabine, melphalan, and alemtuzumab. Donor lymphocyte infusions (DLI) were administered for mixed chimerism or residual or relapsed disease. Eleven patients had sibling donors, 13 had HLA-matched unrelated donors, and 7 had HLA-mismatched unrelated donors. There were no graft failures, and no episodes of grade 4 acute graft-versus-host disease (GVHD); only 19.4% of patients had grade 2 to 3 GVHD, and 22.2% had extensive chronic GVHD. The non-relapse mortality rate was 16.1% (95% confidence interval [CI], 7.1%-34.5%). Relapse incidence was 18.7% (95% CI, 8.2%-39.2%). The study met its primary objective, with a 3-year progression-free survival of 67.7% (95% CI, 48.4%-81.2%). Survival outcomes were equivalent in those with residual metabolically active disease immediately before transplantation (n = 24 [70.8%; 95% CI, 17.2%-83.7%]). Two of the 5 patients who relapsed received DLI and remained in mCR at latest follow-up, with a 3-year overall survival of 80.7% (95% CI, 61.9%-90.8%). We demonstrate encouraging results that establish a potential role for allo-HSCT in selected high-risk patients with HL. This trial was registered at www.clinicaltrials.gov as #NCT00908180

    Correlating acupuncture FMRI in the human brainstem with heart rate variability

    Get PDF
    Abstract-Past neuroimaging studies of acupuncture have demonstrated variable results for important brainstem nuclei. We have employed cardiac-gated fMRI with T1-variability correction to study the processing of acupuncture by the human brain. Furthermore, our imaging experiments collected simultaneous ECG data in order to correlate heart rate variability (HRV) with fMRI signal intensity. Subjects experienced one of three stimulations over a 31.5 minute fMRI run: (1) electro-acupuncture at 2Hz/15Hz over the acupoint ST-36 (2) electro-acupuncture at a sham non-acupoint, or (3) sensory control tapping over ST-36. The ECG was analyzed with power spectral methods for low frequency and high frequency components, which reflect the balance in the autonomic nervous system. The HRV data was then correlated with the time-varying fMRI signal intensity. Our data suggests that fMRI activity in the hypothalamus, the dorsal raphe nucleus, the periaqueductal gray, and the rostroventral medulla showed significant correlation with LF/HF ratio calculated from simultaneous HRV data. The correlation of time-varying fMRI response with physiological parameters may provide insight into connections between acupuncture modulation of the autonomic nervous system and neuroprocessing
    • …
    corecore