17 research outputs found

    Time-resolved crystallography using the Hadamard transform

    Get PDF
    YesWe describe a method for performing time-resolved X-ray crystallographic experiments based on the Hadamard transform, in which time resolution is defined by the underlying periodicity of the probe pulse sequence, and signal/noise is greatly improved over that for the fastest pump-probe experiments depending on a single pulse. This approach should be applicable on standard synchrotron beamlines and will enable high-resolution measurements of protein and small-molecule structural dynamics. It is also applicable to other time-resolved measurements where a probe can be encoded, such as pump-probe spectroscopy.Wellcome Trust 4-year PhD program “The Molecular Basis of Biological Mechanisms” 089312/Z/09/Z. This work was also supported by the EPSRC Award “Dynamic Structural Science at the Research Complex at Harwell” EP/I01974X/1 and by BBSRC Award BB/H001905/1

    Current methods in structural proteomics and its applications in biological sciences

    Full text link

    Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE

    No full text
    Radiation damage is an unwelcome and unavoidable aspect of macromolecular crystallography. In order to quantify the extent of X-ray-induced changes, knowledge of the dose (absorbed energy per unit mass) is necessary since it is the obvious metric against which to plot variables such as diffraction intensity loss and B factors. Significant improvements to the program RADDOSE for accurately calculating the dose absorbed by macromolecular crystals are presented here. Specifically, the probability of energy loss through the escape of fluorescent photons from de-excitation of an atom following photoelectric absorption is now included. For lighter elements, both the probability of fluorescence and of its subsequent escape from the crystal are negligible, but for heavier atoms the chance of fluorescence becomes significant (e.g. 30% as opposed to Auger electron decay from a K-shell excited iron atom), and this has the effect of reducing the absorbed dose. The effects of this phenomenon on dose calculations are presented for examples of crystals of an iron-containing protein, 2-selenomethionine proteins, a uranium derivatised protein, and for a nucleic acid sample. For instance, the inclusion of fluorescent escape results in up to a 27% decrease in the calculated absorbed dose for a typical selenomethionine protein crystal irradiated at the selenium K-edge

    Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay.

    No full text
    The advent of highly intense wiggler and undulator beamlines has reintroduced the problem of X-ray radiation damage in protein crystals even at cryogenic temperatures (100 K). Although cryocrystallography can be utilized for the majority of protein crystals, certain macromolecular crystals (e.g. of viruses) suffer large increases in mosaicity upon flash cooling and data are still collected at room temperature (293 K). An alternative mechanism to cryocooling for prolonging crystal lifetime is the use of radioprotectants. These compounds are able to scavenge the free radical species formed upon X-ray irradiation which are thought to be responsible for part of the observed damage. Three putative radioprotectants, ascorbate, 1,4-benzoquinone and 2,2,6,6-tetramethyl-4-piperidone (TEMP), were tested for their ability to prolong lysozyme crystal lifetimes at 293 K. Plots of relative summed intensity against dose were used as a metric to assess radioprotectant ability: ascorbate and 1,4-benzoquinone appear to be effective, whereas studies on TEMP were inconclusive. Ascorbate, which scavenges OH* radicals (k(OH) = 8 x 10(9) M(-1) s(-1)) and electrons with a lower rate constant (k(e-(aq)) = 3.0 x 10(8) M(-1) s(-1)), doubled the crystal dose tolerance, whereas 1,4-benzoquinone, which also scavenges both OH* radicals (k(OH) = 1.2 x 10(9) M(-1) s(-1)) and electrons (k(e-(aq)) = 1.2 x 10(10) M(-1) s(-1)), offered a ninefold increase in dose tolerance at the dose rates used. Pivotally, these preliminary results on a limited number of samples show that the two scavengers also induced a striking change in the dose dependence of the intensity decay from a first-order to a zeroth-order process

    Practical radiation damage-induced phasing

    No full text
    International audienceAlthough crystallographers typically seek to mitigate radiation damage in macromolecular crystals, in some cases, radiation damage to specific atoms can be used to determine phases de novo. This process is called radiation damage-induced phasing or "RIP." Here, we provide a general overview of the method and a practical set of data collection and processing strategies for phasing macromolecular structures using RIP

    An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography

    Get PDF
    SACLAのX線自由電子レーザーを用いた新規タンパク質立体構造決定に世界で初めて成功. 京都大学プレスリリース. 2015-09-14.Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) holds great potential for structure determination of challenging proteins that are not amenable to producing large well diffracting crystals. Efficient de novo phasing methods are highly demanding and as such most SFX structures have been determined by molecular replacement methods. Here we employed single isomorphous replacement with anomalous scattering (SIRAS) for phasing and demonstrate successful application to SFX de novo phasing. Only about 20,000 patterns in total were needed for SIRAS phasing while single wavelength anomalous dispersion (SAD) phasing was unsuccessful with more than 80,000 patterns of derivative crystals. We employed high energy X-rays from SACLA (12.6 keV) to take advantage of the large anomalous enhancement near the LIII absorption edge of Hg, which is one of the most widely used heavy atoms for phasing in conventional protein crystallography. Hard XFEL is of benefit for de novo phasing in the use of routinely used heavy atoms and high resolution data collection

    The evolution of synchrotron radiation and the growth of its importance in crystallography

    No full text
    The author's 2011 British Crystallographic Association Lonsdale Lecture included a tribute to Kathleen Lonsdale followed by detailed perspectives relevant to the title, with reference to the Synchrotron Radiation Source (SRS) and European Synchrotron Radiation Facility (ESRF). Detector initiatives have also been very important as have sample freezing cryomethods. The use of on-resonance anomalous scattering, smaller crystals, ultra-high resolution as well as the ability to handle large unit cells and the start of time-resolved structural studies have allowed a major expansion of capabilities. The reintroduction of the Laue method became a significant node point for separate development, and has also found wide application with neutron sources in biological and chemical crystallography. The UK's SRS has now been superseded by Diamond, a new synchrotron radiation source with outstanding capabilities. In Hamburg we now have access to the new ultra-low emittance PETRA III, the ultimate storage ring in effect. The ESRF Upgrade is also recently funded and takes us to sub-micrometre and even nanometre-sized X-ray beams. The very new fourth generation of the X-ray laser gives unprecedented brilliance for working with nanocrystals, and perhaps even smaller samples, such as the single molecule, with coherent X-rays, and at femtosecond time resolution
    corecore