7,030 research outputs found

    Quantum birth of the Universe in the varying speed of light cosmologies

    Get PDF
    In the framework of the varying speed of light theory the Wheeler-DeWitt equation is considered in the minisuperspace approximation. The quantum potential is obtained and the tunneling probability is studied in both Vilenkin and Hartle-Hawking approaches.published_or_final_versio

    Totem-pole bridgeless boost PFC rectifier using series-parallel resonant network

    Full text link
    A new series-parallel resonant bridgeless boost (SPBBR) power factor correction (PFC) rectifier is proposed in this paper. It is based on a totem-pole bridgeless boost (TPBLB) configuration which allows bi-directional current to flow during resonance to provide soft-switching for all semiconductor devices. Therefore, no additional active switch is needed. The resonant is produced by a resonant network which is placed before the output capacitor. A detailed analysis of the converter operation and control is presented. Design considerations and parameter values determination are also given. Simulation results is used to verify the theoretical analysis of the SPBBR

    A Transfer-Based Additive LS-SVM Classifier for Handling Missing Data

    Full text link
    IEEE The performance of a classifier might greatly deteriorate due to missing data. Many different techniques to handle this problem have been developed. In this paper, we solve the problem of missing data using a novel transfer learning perspective and show that when an additive least squares support vector machine (LS-SVM) is adopted, model transfer learning can be used to enhance the classification performance on incomplete training datasets. A novel transfer-based additive LS-SVM classifier is accordingly proposed. This method also simultaneously determines the influence of classification errors caused by each incomplete sample using a fast leave-one-out cross validation strategy, as an alternative way to clean the training data to further improve the data quality. The proposed method has been applied to seven public datasets. The experimental results indicate that the proposed method achieves at least comparable, if not better, performance than case deletion, mean imputation, and k-nearest neighbor imputation methods, followed by the standard LS-SVM and support vector machine classifiers. Moreover, a case study on a community healthcare dataset using the proposed method is presented in detail, which particularly highlights the contributions and benefits of the proposed method to this real-world application

    Pulsed and unpulsed gamma-ray emission from millisecond pulsars

    Get PDF
    We use the outer gap model to study the gamma-ray emission and pair production processes of millisecond pulsars. The small light cylinder of millisecond pulsars results in a large optical depth for gamma rays produced inside the light cylinder. Electron/position cascade will take place until the energy of emitted gamma rays is less than a specific threshold energy (E crit). The model for the pulsed gamma-ray spectrum is F1(Eγ) ∼ Eγ -2 for Eγ ≤ E crit. Furthermore, electrons/positrons accelerated in the outer gap can continue to interact with the low-energy gamma rays beyond the light cylinder to produce very high energy gamma rays. The subsequent pair production and radiation processes can produce unpulsed high-energy photons in the energy range of the EGRET detector on board the Compton Gamma Ray Observatory with a model spectrum F 2(Eγ) ∼ Eγ∼ -3/2 for most millisecond pulsars. We have calculated the theoretical spectra of PSR J0751 + 18, PSR 1821-24, and PSR 1937+21 to illustrate our model. Unpulsed gamma-ray emission from other sources, e.g., 47 Tuc, are discussed also. © 1996. The American Astronomical Society. All rights reserved.published_or_final_versio

    LFA-1 Engagement Triggers T Cell Polarization at the HIV-1 Virological Synapse

    Get PDF
    HIV-1 efficiently disseminates by cell-cell spread at intercellular contacts called virological synapses (VS), where the virus preferentially assembles and buds. Cell-cell contact triggers active polarization of organelles and viral proteins within infected cells to the contact site to support efficient VS formation and HIV-1 spread; critically, however, which cell surface protein triggers contact-induced polarization at the VS remains unclear. Additionally, the mechanism by which the HIV-1 envelope glycoprotein (Env) is recruited to the VS remains ill defined. Here, we use a reductionist bead-coupled antibody assay as a model of the VS and show that cross-linking the integrin LFA-1 alone is sufficient to induce active T cell polarization and recruitment of the microtubule organizing center (MTOC) in HIV-1-infected cells. Mutant cell lines coupled with inhibitors demonstrated that LFA-1-induced polarization was dependent on the T cell kinase ZAP70. Notably, immunofluorescent staining of viral proteins revealed an accumulation of surface Env at sites of LFA-1 engagement, with intracellular Env localized to a Golgi compartment proximal to the polarized MTOC. Furthermore, blocking LFA-1-induced MTOC polarization through ZAP70 inhibition prevented intracellular Env polarization. Taken together, these data reveal that LFA-1 is a key determinant in inducing dynamic T cell remodeling to the VS and suggest a model in which LFA-1 engagement triggers active polarization of the MTOC and the associated Env-containing secretory apparatus to sites of cell-cell contact to support polarized viral assembly and egress for efficient cell-cell spread. IMPORTANCE: HIV-1 causes AIDS by spreading within immune cells and depletion of CD4 T lymphocytes. Rapid spread between these cells occurs by highly efficient cell-cell transmission that takes place at virological synapses (VS). VS are characterized by striking T cell remodeling that is spatially associated with polarized virus assembly and budding at sites of cell contact. Here, we show that the integrin LFA-1 triggers organelle polarization and viral protein recruitment, facilitating formation of the VS, and that this requires the T cell kinase ZAP70. Taken together, these data suggest a mechanism by which HIV-1-infected T cells sense and respond to cell contact to polarize viral egress and promote cell-cell spread. Understanding how cell-cell spread is regulated may help reveal therapeutic targets to specifically block this mode of HIV-1 dissemination

    On unitary subsectors of polycritical gravities

    Full text link
    We study higher-derivative gravity theories in arbitrary space-time dimension d with a cosmological constant at their maximally critical points where the masses of all linearized perturbations vanish. These theories have been conjectured to be dual to logarithmic conformal field theories in the (d-1)-dimensional boundary of an AdS solution. We determine the structure of the linearized perturbations and their boundary fall-off behaviour. The linearized modes exhibit the expected Jordan block structure and their inner products are shown to be those of a non-unitary theory. We demonstrate the existence of consistent unitary truncations of the polycritical gravity theory at the linearized level for odd rank.Comment: 22 pages. Added references, rephrased introduction slightly. Published versio

    Tellurium quantum dots: Preparation and optical properties

    Get PDF
    Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics

    Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene

    Get PDF
    We investigate electronic transport in high mobility (\textgreater 100,000 cm2^2/V\cdots) trilayer graphene devices on hexagonal boron nitride, which enables the observation of Shubnikov-de Haas oscillations and an unconventional quantum Hall effect. The massless and massive characters of the TLG subbands lead to a set of Landau level crossings, whose magnetic field and filling factor coordinates enable the direct determination of the Slonczewski-Weiss-McClure (SWMcC) parameters used to describe the peculiar electronic structure of trilayer graphene. Moreover, at high magnetic fields, the degenerate crossing points split into manifolds indicating the existence of broken-symmetry quantum Hall states.Comment: Supplementary Information at http://jarilloherrero.mit.edu/wp-content/uploads/2011/04/Supplementary_Taychatanapat.pd

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Ultra-strong Adhesion of Graphene Membranes

    Full text link
    As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Young's modulus and strength are both intrinsically high, but the mechanical behavior of graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45 \pm 0.02 J/m2 for monolayer graphene and 0.31 \pm 0.03 J/m2 for samples containing 2-5 graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid/liquid adhesion energies. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.Comment: to appear in Nature Nanotechnolog
    corecore