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Abstract. – In the framework of the varying speed of light theory the Wheeler-DeWitt
equation is considered in the minisuperspace approximation. The quantum potential is obtained
and the tunneling probability is studied in both Vilenkin and Hartle-Hawking approaches.

Introduction. – Recently the cosmological implications of a variable speed of light have
been considered in several papers. Varying speed of light (VSL) models proposed by Moffat [1,
2] and Albrecht and Magueijo [3], in which light is travelling faster in the early periods of
the existence of the Universe, might solve the same problems as inflation. Hence they could
become a valuable alternative explanation of the dynamics and evolution of our Universe and
also provide a solution to the problem of the variation of the physical “constants” [4]. In its
minimal formulation [3] the VSL theory starts from the variational principle

S =
∫

dx4√−g
[
c4(xi)(R+ 2Λ(xi))

16πG(xi)
+ LM

]
, (1)

which leads to the minimally modified Einstein field equations [3, 4]

Rk
i − 1

2
δki R =

8πG(xj)
c4(xj)

T k
i + Λ(xj)δki . (2)

Supposing that the gravitational constant G, the cosmological constant Λ and the speed
of light c are independent fields, eq. (2) implies a matter creation process due to the non-
conservativity of the energy-momentum tensor T k

i . The particle number creation rate is
determined by the (temporal) variations of G, Λ and c [5]. Hence in the framework of the
minimal VSL model a self-consistent phenomenological description of the particle and entropy
generation processes in the early Universe is obtained, describing the birth of a FRW-type
Universe from a vacuum state [5]. On a classical level this scenario is very similar to models
assuming that the Universe arose from nothing due to a quantum tunneling process [6] or as
a result of some quantum fluctuations of the vacuum.
c© EDP Sciences
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It is the purpose of the present letter to consider some quantum cosmological aspects of
the minimal VSL theory with matter creation. In particular we shall investigate the problem
of the quantum tunneling in theories with variable G, Λ and c. The present letter is organized
as follows. The classical VSL cosmological model is described in the following section. In the
third section we obtain the corresponding Wheeler-DeWitt equation and the general properties
of the quantum tunneling potential are considered. In the last section we conclude our results.

A classical VSL cosmological model. – In a preferred frame the VSL model FRW metric
is given by [1–3]

ds2 = −c2(t)dt2 + a2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]
, (3)

with k = 0,±1. The corresponding gravitational field and particle production equations are [5]

3
ȧ2

a2
+ 3k

c2(t)
a2

= 8πG(t)ρ(t) + c2(t)Λ(t) , (4)

ρ̇+ 3
(
ρ+

p

c2(t)

)
ȧ

a
= − ρ(t)

G(t)

[
c2(t)Λ̇(t)
8πρ(t)

+ Ġ(t) − 2G(t)
ċ(t)
c(t)

]
. (5)

Equation (5), a consequence of the non-conservativity of the energy-momentum tensor,
describes the generation of matter from vacuum. By assuming an equation of state of the
form p = (γ − 1)ρc2(t), 1 ≤ γ ≤ 2, and the phenomenological relations

G =
G0

aα
, Λ =

Λ0

aβ
, c =

c0
aε
, ρ = ρ0a

n , (6)

with all G0, Λ0, c0, ρ0, α, β and n non-negative, eq. (5) is identically satisfied if

n = α− β − 2ε and β =
8πγG0ρ0
A0c20

, (7)

where we have denoted A0 =
(

Λ0 + 8πG0ρ0
c2
0

)
/3.

By using eqs. (4) and (7), we can express the general solution of the field equations in the
following exact parametric form:

τ − τ0 =
∫

AεdA√
A2−β − k , ρ = ρ0A

n
β−2
0 An, q = ε− 2 − β

2(1 − kAβ−2)
. (8)

In eq. (8) we have introduced the dimensionless scale factor A and time τ by means of the

transformations a = A
1

β−2
0 A and τ = c0A

ε+1
2−β

0 t. The deceleration parameter is expressed as
q = −aä

ȧ2 . For k = 0,−1 the Universe started its evolution from a vacuum state with a = 0 and
ρ = 0. For k = +1 the solution is physically defined only for values of A2−β > 1. The classical
closed non-conservative Universe was born from a non-vacuum state with a = a0 > 0 and
ρ = ρ0 > 0. Due to the variation of the speed of light and of the gravitational and cosmological
constants, matter is generated from “nothing”, and the energy density of the Universe is
rapidly increasing. The variations of ρ for a closed spherical geometry (k = +1) and for various
values of the parameters are represented in fig. 1. The expansion of the closed FRW Universe
is generally non-inflationary (q > 0) for all times but if the condition ε+ β

2 < 1 is fulfilled, the

Universe ends in an inflationary epoch. The density parameter Ω = 3
8πG0ρ0

A
α−n
β−2
0 (1 − kAβ−2)
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Fig. 1 – Variation of the energy density ρ (in the normalization ρ0A
n

β−2
0 = 1) as a function of time τ

for a closed FRW space-time (k = +1) and for different values of the parameter α: α = 3 (full curve),
α = 3.25 (dotted curve) and α = 3.5 (dashed curve) (β = 1, ε = 1

2
).

Fig. 2 – Variations of the quantum potential u(a) = U
U0
as a function of the scale factor in the

minisuperspace (k = +1) for different values of the parameter α: α = 5 (full curve), α = 3.5 (dotted
curve), α = 2.5 (short-dashed curve) (β = 5

4
, ε = 1

2
) and α = 5, β = 3 and ε = 1

2
(long-dashed curve).

is a free parameter that can be adjusted to match its value resulted from astronomical data.
Recent observations show that Ω ∼ 0.2–0.3 [7], in contradiction with the prediction of the
inflationary cosmology according to which the Universe will expand very close to the critical
divide Ω = 1.

Quantum tunneling in the VSL cosmological models. – To formulate in the minisuper-
space metric (3) the quantum version of the previous classical model, we shall write the total
action S = SG + SM in the form

S = 3V3

∫
c3(a)

8πG(a)

(
(ε− 1)aȧ2 + kc2(a)a− Λ(a)a3c2(a)

3
− 8πG(a)ρ(a)a3

3

)
dt . (9)

To obtain (9) we have used the relation
∫

dx4√−g ≡ ∫
V3c(a)a3dt, eqs. (6) and we ne-

glected a total derivative with respect to time. V3 is the volume of the space-like hypersurfaces.
Only the spherical three-space (k = 1) is of finite extent, with volume V3 = 2π2 and, conse-
quently, with finite action. The action (9) is similar to the actions proposed to describe SO(3)
invariant quasi-Riemannian models of gravity, with ε a constant parametrizing the breaking
of the local Lorentz symmetry [8]. In order to pass to the Hamiltonian formalism, conjugate
momentum must be calculated. It is given by

Πa =
∂L

∂ȧ
=

3V3(ε− 1)
4πG(t)

c3(a)aȧ . (10)

From the last expression we obtain the canonical Hamiltonian H = Πaȧ− L,

H =
2πG(a)

3(ε− 1)V3c3(a)
1
a

Π2
a − 3V3c

5(a)
8πG(a)

ka+
V3c

5(a)
8πG(a)

Λ(a)a3 + V3c
3(a)a3ρ(a) . (11)

For ε � 1 the Hamiltonian constraint (11) H = 0 gives eq. (4). The Dirac quanti-
zation of the Hamiltonian (11) consists in replacing the momentum according to the rule
Π2

a → −h̄2a−p ∂
∂a (ap ∂

∂a ), where p takes into account the factor ordering ambiguity. But this
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ambiguity is unimportant in the semiclassical approximation, so we shall take p = 0. Taking
into account that the action of the operator Ĥ on the wave function of the Universe Ψ gives
zero,

�

HΨ = 0, we obtain the Wheeler-DeWitt equation [9] describing the quantum dynamics
of the Universe in the minimal VSL theory,(

d2

da2
− U(a)

)
Ψ(a) = 0 , (12)

where the quantum potential U(a) is given by

U(a) =
9(1 − ε)V 2

3

16π2h̄2

c6(a)a2

G2(a)

[
kc2(a) − Λ(a)c2(a)a2

3
− 8πG(a)a2

3
ρ(a)

]
. (13)

By using eqs. (6), (7) the quantum potential can be represented as

U(a) = U0a
2(α+1−4ε)(k −A0a

2−β) , (14)

where U0 = 9(1−ε)V 2
3 c8

0
16π2h̄2G2

0
. This form of U(a) presents some similarities with the potentials

obtained in [10] for different physical (cosmological constant, decaying cosmological constant,
scalar field and uniform density scalar field) models with the classical version of each model
leading to inflation. For ε = 0 and α = 0, we obtain exactly the same form as given by
Norbury [10] for the quantum potential generated by a decaying cosmological constant. The
variation of U(a) is represented, for k = +1 and for different values of the constants α, β and
ε in fig. 2. For some classes of values of parameters the potential tends to zero for a → 0,
U(0) → 0, then increases with increasing a, reaches a maximum and then turns over due to the
second term in the bracket of eq. (14). By an appropriate choice of parameters the potential
can also be displaced in the negative region. The maximum value of the quantum potential

U(a) is obtained for a = am =
(

2(1+α−4ε)
A0(4+2α−β−8ε)

) 1
2−β

. The zeros of U(a) are given by a = 0 and

a = a0 = A
1

β−2
0 . The shape and height of U(a) are highly dependent on the numerical values

of the constants describing the variations of the gravitational and cosmological constants and
of the speed of light.

The evolution of the Universe can be viewed as the motion of a fictitious particle with zero
energy and coordinate a(t) in the potential given by eq. (14). The particle starts to the left of
the potential and quantum mechanically there is a probability that the Universe can tunnel
through the barrier and end up on the other side with a non-zero value of a. In the region
a < a0 the wave function becomes oscillatory while for a > a0 the wave function exponentially
decays.

In the classically allowed region the WKB solutions of eq. (12) are [11]

Ψ(1)
± (a) = exp

[
±i

∫ a

a0

√
−U(a′)da′ ∓ iπ

4

]
, (15)

where Ψ(1)
+ and Ψ(1)

− describe a contracting and expanding Universe. The component of the
wave function describing the contracting Universe from the infinitely large side should be
absent. This means that when the cosmological scale factor a > a0 the Universe is under the
expanding phase, Ψ(a) = Ψ(1)

− (a). Then, the WKB connection formula gives the under-barrier
(classically forbidden or Euclidean region) solutions as

Ψ(2)(a) = exp
[∫ a0

a

|
√

−U(a′)|da′
]
. (16)
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Fig. 3 – Variation of the tunneling probability PV = |Ψ(a0)
Ψ(0)

|2 as a function of the parameters α and

ε (β = 0.01), with the wave function calculated by using the Vilenkin approach.

Fig. 4 – Variation of the tunneling probability PH-H as a function of the parameters α and ε (β = 0.01)
in the Hartle-Hawking approach.

The nucleation probability (probability distribution for the initial values of a in nucleating
Universe) can be approximated as [11,12]

PV =
∣∣∣∣Ψ(2)(a0)

Ψ(2)(0)

∣∣∣∣2 ∼ exp
[
−2

∫ a0

0

|
√

−U(a′)|da′
]
. (17)

In fig. 3 we have represented the variation of the tunneling probability (17) as a function
of the parameters α and ε (β = constant = 0.01). We have normalized the parameters by
means of the relations A0 = 1 and U0 = 1. With this choice we also have a0 = 1. The
tunneling probability increases with increasing α. For ε = 0 and α = 0, this probability is, in
our normalization, PV = 0.51, while for α = 4 and ε = 0.9, the tunneling probability increases
to PV = 0.71. But for fixed α and β the tunneling probability decreases with increasing ε
(decreasing c).

The Hartle-Hawking (H-H) no-boundary wave function is given by the path integral [13]

ΨH-H =
∫

[dg]e−Ieff (g) , (18)

where we integrate over all Euclidean-signature 4-metrics gµν defined on a 4-manifold M4,
that is, we take the 3-manifold M3(h) with 3-metrics hij as a boundary. Hartle and Hawk-
ing [13] proposed as a cosmological initial condition that the manifold M4 should have no
other boundary than M3(h).

In order to determine ΨH-H, we first perform the Wick rotation τ = it and consider a
saddle-point approximation to the path integral (19), ΨH-H(a) ∝ e−Ieff (a)|saddle-point , where Ieff
is given by

Ieff = 4π2

∫ τ

0

aα+1−5ε(a2−β − 1)dτ (19)
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and a satisfies the classical equation of motion

da
dτ

= a−ε

[
1

1 − ε (1 − a2−β)
] 1

2

, a(0) = 0 . (20)

In eqs. (19) and (20) we have used the same normalization of the parameters as for the
Vilenkin wave function. In the limit α = ε = 0 and β = constant, we recover the results
of [13]. In fig. 4 we present the variation with α and ε (β = constant = 0.01) of the tunneling
probability PH-H obtained by using the Hartle-Hawking wave function. In this approach the
tunneling probability is rapidly decreasing with increasing α, but it increases with decreasing
speed of light (increasing ε).

Conclusions. – In the present letter we have obtained the potential describing the
quantum-mechanical evolution of the tunneling Universe in the framework of the VSL the-
ory with matter creation. We also estimated the tunneling probability in both Vilenkin and
Hartle-Hawking approaches. By allowing general variations of all the constants c, G and Λ,
a classical model describing matter creation is presented. The corresponding quantum po-
tential in minisuperspace generalizes the tunneling inflationary potentials discussed in [10].
By appropriately choosing the arbitrary constants α, β and ε describing the variations of the
gravitational and cosmological constants and of the speed of light, respectively, we can reduce
the height of the tunneling potential or even displace it in the negative region. If the potential
is negative there is no possibility of tunneling anymore since a zero-energy system is always
above the potential. The presence of a negative potential has a drastic effect on quantum
creation scenarios as the forbidden region that is assumed to be tunneled through is no longer
present. The classical singularity at zero scale factor is no longer isolated from the Universe
by the quantum potential but instead classical evolution can start from arbitrarily small size.

This classical feature is also present in the original VSL phase transition scenario of Mof-
fat [1, 2] and Albrecht and Magueijo [3], in which it is supposed there was a phase transition
at time tc when the speed of light changed from c− to c+. Sharp declines in c always discharge
any vacuum energy density into ordinary matter. In the cosmological solutions of this theory
the condition of the positivity of n from eq. (7) is not imposed, hence the energy density of
the matter is generally decreasing. In the phase transition model the form of the quantum
potential can also be obtained in the form (13). If the condition c2(a) < 8πG(a)a2ρ(a)/3

k−Λ(a)a2/3 holds,
the potential is displaced in the negative region. Therefore if the speed of light changed the
dynamics of the very early Universe was classical. This result, obtained in the present paper
from a quantum approach, is consistent with the result of Barrow and Magueijo [14] obtained
in the framework of a classical phase transition VSL model. By using for the dynamics of c a
model inspired from dilaton theories, they have found that, as we go back in time, t

tP
(where

tP = (Gh/c5)1/2 is the Planck time) increases and hence the Universe does not have a quan-
tum origin. As a result of a rapid change of the speed of light the very early Universe became
very classical, due to the annihilation of the positive component of the quantum potential.
Because the forbidden region is absent, the wave function describing the quantum evolution
of the Universe will be purely oscillatory.

The classical Universe born as a result of the VSL process is in a non-inflationary stage,
with still varying c, Λ and G. The rapid change of the speed of light during the early evolution
of the Universe can also solve the flatness and horizon problem [1–4]. The speed of light is
the only fundamental physical constant having this property, a change in the gravitational
constant G does not solve the cosmological problems solved by inflation [3]. Future work will
be devoted to find exact solutions of the Wheeler-DeWitt equation (15) and to extend the



820 EUROPHYSICS LETTERS

present analysis to open and flat geometries and to non-minimal VSL theories.
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