35 research outputs found

    Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s) of the secretory isoform in breast tumor progression and metastasis.</p> <p>Methods</p> <p>To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU) that over-expresses clusterin. We have measured the <it>in vitro </it>effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression.</p> <p>Results</p> <p>In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs.</p> <p>Conclusions</p> <p>These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells.</p

    Alzheimer's risk variants in the clusterin gene are associated with alternative splicing

    Get PDF
    Genetic variation in CLU encoding clusterin has been associated with Alzheimer's disease (AD) through replicated genome-wide studies, but the underlying mechanisms remain unknown. Following earlier reports that tightly regulated CLU alternative transcripts have different functions, we tested CLU single-nucleotide polymorphisms (SNPs), including those associated with AD for quantitative effects on individual alternative transcripts. In 190 temporal lobe samples without pathology, we found that the risk allele of the AD-associated SNP rs9331888 increases the relative abundance of transcript NM_203339 (P=4.3 × 10−12). Using an independent set of 115 AD and control samples, we replicated this result (P=0.0014) and further observed that multiple CLU transcripts are at higher levels in AD compared with controls. The AD SNP rs9331888 is located in the first exon of NM_203339 and therefore, it is a functional candidate for the observed effects. We tested this hypothesis by in vitro dual luciferase assays using SK-N-SH cells and mouse primary cortical neurons and found allelic effects on enhancer function, consistent with our results on post-mortem human brain. These results suggest a biological mechanism for the genetic association of CLU with AD risk and indicate that rs9331888 is one of the functional DNA variants underlying this association

    CLU blocks HDACI-mediated killing of neuroblastoma

    Get PDF
    Clusterin is a ubiquitously expressed glycoprotein with multiple binding partners including IL-6, Ku70, and Bax. Clusterin blocks apoptosis by binding to activated Bax and sequestering it in the cytoplasm, thereby preventing Bax from entering mitochondria, releasing cytochrome c, and triggering apoptosis. Because increased clusterin expression correlates with aggressive behavior in tumors, clusterin inhibition might be beneficial in cancer treatment. Our recent findings indicated that, in neuroblastoma cells, cytoplasmic Bax also binds to Ku70; when Ku70 is acetylated, Bax is released and can initiate cell death. Therefore, increasing Ku70 acetylation, such as by using histone deacetylase inhibitors, may be therapeutically useful in promoting cell death in neuroblastoma tumors. Since clusterin, Bax, and Ku70 form a complex, it seemed likely that clusterin would mediate its anti-apoptotic effects by inhibiting Ku70 acetylation and blocking Bax release. Our results, however, demonstrate that while clusterin level does indeed determine the sensitivity of neuroblastoma cells to histone deacetylase inhibitor-induced cell death, it does so without affecting histone deacetylase-inhibitor-induced Ku70 acetylation. Our results suggest that in neuroblastoma, clusterin exerts its anti-apoptotic effects downstream of Ku70 acetylation, likely by directly blocking Bax activation

    Comparison of the clonogenic survival of A549 non-small cell lung adenocarcinoma cells after irradiation with low-dose-rate beta particles and high-dose-rate X-rays

    Get PDF
    Purpose: Lung cancer is the leading cause of cancer-related death. Among the new modalities to treat cancer, internal radiotherapy seems to be very promising. However, the achievable dose-rate is two orders of magnitude lower than the one used in conventional external radiotherapy, and data has to be collected to evaluate the cell response to highlight the potential effectiveness of low-dose-rate beta particles irradiation. This work investigates the phosphorus beta irradiation ( P) dose response on the clonogenicity of human A549 non-small cell lung adenocarcinoma cells and compares it to high-dose-rate X-irradiations results. Materials and methods: Cell survival was evaluated by a colony forming assay eight days after low-dose-rate P beta irradiations (0.8 Gy/h) and high-dose-rate X-ray irradiations (0.855 Gy/min). Results: Survival curves were obtained for both types of irradiations, and showed hyper-radiosensitivity at very low doses. Radiosensitivity parameters were obtained by using the linear-quadratic and induced-repair models. Conclusions: Comparison with high-dose-rate X-rays shows a similar surviving fraction, confirming the effectiveness of beta particles for tumor sterilization. © 2012 Informa UK, Ltd

    Comparison of the clonogenic survival of A549 non-small cell lung adenocarcinoma cells after irradiation with low-dose-rate beta particles and high-dose-rate X-rays.

    Get PDF
    Abstract Purpose: Lung cancer is the leading cause of cancer-related death. Among the new modalities to treat cancer, internal radiotherapy seems to be very promising. However, the achievable dose-rate is two orders of magnitude lower than the one used in conventional external radiotherapy, and data has to be collected to evaluate the cell response to highlight the potential effectiveness of low-dose-rate beta particles irradiation. This work investigates the phosphorus beta irradiation ((32)P) dose response on the clonogenicity of human A549 non-small cell lung adenocarcinoma cells and compares it to high-dose-rate X-irradiations results. Materials and methods: Cell survival was evaluated by a colony forming assay eight days after low-dose-rate (32)P beta irradiations (0.8 Gy/h) and high-dose-rate X-ray irradiations (0.855 Gy/min). Results: Survival curves were obtained for both types of irradiations, and showed hyper-radiosensitivity at very low doses. Radiosensitivity parameters were obtained by using the linear-quadratic and induced-repair models. Conclusions: Comparison with high-dose-rate X-rays shows a similar surviving fraction, confirming the effectiveness of beta particles for tumor sterilization

    Clusterin Is a Potential Lymphotoxin Beta Receptor Target That Is Upregulated and Accumulates in Germinal Centers of Mouse Spleen during Immune Response

    No full text
    <div><p>Clusterin is a multifunctional protein that participates in tissue remodeling, apoptosis, lipid transport, complement-mediated cell lysis and serves as an extracellular chaperone. The role of clusterin in cancer and neurodegeneration has been extensively studied, however little is known about its functions in the immune system. Using expression profiling we found that clusterin mRNA is considerably down-regulated in mouse spleen stroma upon knock-out of lymphotoxin β receptor which plays pivotal role in secondary lymphoid organ development, maintenance and function. Using immunohistochemistry and western blot we studied clusterin protein level and distribution in mouse spleen and mesenteric lymph nodes in steady state and upon immunization with sheep red blood cells. We showed that clusterin protein, represented mainly by the secreted heterodimeric form, is present in all stromal compartments of secondary lymphoid organs except for marginal reticular cells. Clusterin protein level rose after immunization and accumulated in light zones of germinal centers in spleen - the effect that was not observed in lymph nodes. Regulation of clusterin expression by the lymphotoxin beta signaling pathway and its protein dynamics during immune response suggest a specific role of this enigmatic protein in the immune system that needs further study.</p></div
    corecore