4,747 research outputs found
Early developing syntactic knowledge influences sequential statistical learning in infancy
Adults\u2019 linguistic background influences their sequential statistical learning of an artificial language characterized by conflicting forward-going and backward-going transitional probabilities. English-speaking adults favor backward-going transitional probabilities, consistent with the head-initial structure of English. Korean-speaking adults favor forward-going transitional probabilities, consistent with the head-final structure of Korean. These experiments assess when infants develop this directional bias. In the experiments, 7-month-old infants showed no bias for forward-going or backward-going regularities. By 13 \u202fmonths, however, English-learning infants favored backward-going transitional probabilities over forward-going transitional probabilities, consistent with English-speaking adults. This indicates that statistical learning rapidly adapts to the predominant syntactic structure of the native language. Such adaptation may facilitate subsequent learning by highlighting statistical structures that are likely to be informative in the native linguistic environment
Investigation of the Antiasthmatic Properties of Ethanol Extract of Callophyllis japonica in Mice
Purpose: To determine whether an ethanol extract from Callophyllis japonica (C. japonica) could attenuate indices of airway inflammation in a murine model of ovalbumin (OVA)-induced asthma.Methods: The free radical scavenging activity of the C. japonica ethanol extracts (CJE) were investigated using an electron spin resonance (ESR) system. To make develop animal model of asthma, mice were sensitized and challenged with OVA.Results: CJE exhibited considerable scavenging activity of 71.08 ± 0.73, 79.11 ± 6.04%, 75.95 ± 7.01%, and 48.56 ± 5.96% of DPPH, alkyl, superoxide, and hydroxyl radicals, respectively. The successive intraperitoneal administration of CJE reduced the number of eosinophils in bronchoalveolar lavage (BAL) fluid, development of airway hyperresponsiveness (AHR), an increase in pulmonary Th2 cytokines, and allergen-specific immunoglobulin E (IgE).Conclusion: Administration of CJE markedly alleviates all indices of airway inflammation. This study provides evidence that CJE plays a critical role in the amelioration of the pathogenetic process of allergic asthma in mice.Keywords: Asthma, Phenolic contents, Free radical scavenging, Airway hyper-responsiveness, Cytokines, Immunoglobulin
Effect of amorphous Si quantum-dot size on 1.54 μm luminescence of Er
The role of the size of amorphous silicon quantum dots in the Er luminescence at 1.54 μm was investigated. As the dot size was increased, more Er ions were located near one dot due to its large surface area and more Er ions interacted with other ones. This Er-Er interaction caused a weak photoluminescence intensity, despite the increase in the effective excitation cross section. The critical dot size needed to take advantage of the positive effect on Er luminescence is considered to be about 2.0 nm, below which a small dot is very effective in the efficient luminescence of Er. © 2005 The Electrochemical Society. All rights reserved
Tolfenamic Acid Induces Apoptosis and Growth Inhibition in Head and Neck Cancer: Involvement of NAG-1 Expression
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is induced by nonsteroidal anti-inflammatory drugs and possesses proapoptotic and antitumorigenic activities. Although tolfenamic acid (TA) induces apoptosis in head and neck cancer cells, the relationship between NAG-1 and TA has not been determined. This study investigated the induction of apoptosis in head and neck cancer cells treated by TA and the role of NAG-1 expression in this induction. TA reduced head and neck cancer cell viability in a dose-dependent manner and induced apoptosis. The induced apoptosis was coincident with the expression of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. TA significantly inhibited tumor formation as assessed by xenograft models, and this result accompanied the induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression in head and neck squamous cell carcinoma, providing an additional mechanistic explanation for the apoptotic activity of TA
Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics
The celebrated electronic properties of graphene have opened way for
materials just one-atom-thick to be used in the post-silicon electronic era. An
important milestone was the creation of heterostructures based on graphene and
other two-dimensional (2D) crystals, which can be assembled in 3D stacks with
atomic layer precision. These layered structures have already led to a range of
fascinating physical phenomena, and also have been used in demonstrating a
prototype field effect tunnelling transistor - a candidate for post-CMOS
technology. The range of possible materials which could be incorporated into
such stacks is very large. Indeed, there are many other materials where layers
are linked by weak van der Waals forces, which can be exfoliated and combined
together to create novel highly-tailored heterostructures. Here we describe a
new generation of field effect vertical tunnelling transistors where 2D
tungsten disulphide serves as an atomically thin barrier between two layers of
either mechanically exfoliated or CVD-grown graphene. Our devices have
unprecedented current modulation exceeding one million at room temperature and
can also operate on transparent and flexible substrates
Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application
We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application
Intranasal Introduction of Fc-Fused Interleukin-7 Provides Long-Lasting Prophylaxis against Lethal Influenza Virus Infection
Influenza A virus (IAV) infection frequently causes hospitalization and mortality due to severe immunopathology. Annual vaccination and antiviral drugs are the current countermeasures against IAV infection, but they have a limited efficacy against new IAV variants. Here, we show that intranasal pretreatment with Fc-fused interleukin-7 (IL-7-mFc) protects mice from lethal IAV infections. The protective activity of IL-7-mFc relies on transcytosis via neonatal Fc receptor (FcRn) in the lung and lasts for several weeks. Introduction of IL-7-mFc alters pulmonary immune environments, leading to recruitment of T cells from circulation and their subsequent residency as tissue-resident memory-like T (T-RM-like) cells. IL-7-mFc-primed pulmonary T-RM-like cells contribute to protection upon IAV infection by dual modes. First, T-RM-like cells, although not antigen specific but polyclonal, attenuate viral replication at the early phase of IAV infection. Second, T-RM-like cells augment expansion of IAV-specific cytotoxic T lymphocytes (CTLs), in particular at the late phase of infection, which directly control viruses. Thus, accelerated viral clearance facilitated by pulmonary T cells, which are either antigen specific or not, alleviates immunopathology in the lung and mortality from IAV infection. Depleting a subset of pulmonary T cells indicates that both CD4 and CD8 T cells contribute to protection from IAV, although IL-7-primed CD4 T cells have a more prominent role. Collectively, we propose intranasal IL-7-mFc pretreatment as an effective means for generating protective immunity against IAV infections, which could be applied to a potential prophylaxis for influenza pandemics in the future.
IMPORTANCE
The major consequence of a highly pathogenic IAV infection is severe pulmonary inflammation, which can result in organ failure and death at worst. Although vaccines for seasonal IAVs are effective, frequent variation of surface viral proteins hampers development of protective immunity. In this study, we demonstrated that intranasal IL-7-mFc pretreatment protected immunologically naive mice from lethal IAV infections. Intranasal pretreatment with IL-7-mFc induced an infiltration of T cells in the lung, which reside as effector/memory T cells with lung-retentive markers. Those IL-7-primed pulmonary T cells contributed to development of protective immunity upon IAV infection, reducing pulmonary immunopathology while increasing IAV-specific cytotoxic T lymphocytes. Since a single treatment with IL-7-mFc was effective in the protection against multiple strains of IAV for an extended period of time, our findings suggest a possibility that IL-7-mFc treatment, as a potential prophylaxis, can be developed for controlling highly pathogenic IAV infections.open1175sciescopu
Local Optical Probe of Motion and Stress in a multilayer graphene NEMS
Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the
crossroads between mechanics, optics and electronics, with significant
potential for actuation and sensing applications. The reduction of dimensions
compared to their micronic counterparts brings new effects including
sensitivity to very low mass, resonant frequencies in the radiofrequency range,
mechanical non-linearities and observation of quantum mechanical effects. An
important issue of NEMS is the understanding of fundamental physical properties
conditioning dissipation mechanisms, known to limit mechanical quality factors
and to induce aging due to material degradation. There is a need for detection
methods tailored for these systems which allow probing motion and stress at the
nanometer scale. Here, we show a non-invasive local optical probe for the
quantitative measurement of motion and stress within a multilayer graphene NEMS
provided by a combination of Fizeau interferences, Raman spectroscopy and
electrostatically actuated mirror. Interferometry provides a calibrated
measurement of the motion, resulting from an actuation ranging from a
quasi-static load up to the mechanical resonance while Raman spectroscopy
allows a purely spectral detection of mechanical resonance at the nanoscale.
Such spectroscopic detection reveals the coupling between a strained
nano-resonator and the energy of an inelastically scattered photon, and thus
offers a new approach for optomechanics
- …