10 research outputs found

    Noncovalent Surface Modification of Cellulose Nanopapers by Adsorption of Polymers from Aprotic Solvents

    No full text
    Basic adsorption of hydrophobic polymers from aprotic solvents was introduced as a platform technology to modify exclusively the surfaces of cellulose nanopapers. Dynamic vapor sorption demonstrated that the water vapor uptake ability of the nanopapers remained unperturbed, despite strong repellency to liquid water caused by the adsorbed hydrophobic polymer on the surface. This was enabled by the fact that the aprotic solvents used for adsorption did not swell the nanopaper unlike water that is generally applied as the adsorption medium in such systems. As case examples, the adsorptions of polystyrene (PS) and poly(trifluoroethylene) (PF3E) were followed by X-ray photoelectron spectroscopy and water contact angle measurements, backed up with morphological analysis by atomic force microscopy. The resulting nanopapers are useful in applications like moisture buffers where repellence to liquid water and ability for moisture sorption are desired qualities

    A Review of Multi-Responsive Membranous Systems for Rate-Modulated Drug Delivery

    No full text
    Membrane technology is broadly applied in the medical field. The ability of membranous systems to effectively control the movement of chemical entities is pivotal to their significant potential for use in both drug delivery and surgical/medical applications. An alteration in the physical properties of a polymer in response to a change in environmental conditions is a behavior that can be utilized to prepare ‘smart’ drug delivery systems. Stimuli-responsive or ‘smart’ polymers are polymers that upon exposure to small changes in the environment undergo rapid changes in their microstructure. A stimulus, such as a change in pH or temperature, thus serves as a trigger for the release of drug from membranous drug delivery systems that are formulated from stimuli-responsive polymers. This article has sought to review the use of stimuli-responsive polymers that have found application in membranous drug delivery systems. Polymers responsive to pH and temperature have been extensively addressed in this review since they are considered the most important stimuli that may be exploited for use in drug delivery, and biomedical applications such as in tissue engineering. In addition, dual-responsive and glucose-responsive membranes have been also addressed as membranes responsive to diverse stimuli
    corecore