23 research outputs found

    Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization

    Get PDF
    Renal cell carcinoma (RCC) are frequently chemo- and radiation resistant. Thus, there is a need for identifying biological features of these cells that could serve as alternative therapeutic targets. We performed suppression subtractive hybridization (SSH) on patient-matched normal renal and RCC tissue to identify variably regulated genes. 11 genes were strongly up-regulated or selectively expressed in more than one RCC tissue or cell line. Screening of filters containing cancer-related cDNAs confirmed overexpression of 3 of these genes and 3 additional genes were identified. These 14 differentially expressed genes, only 6 of which have previously been associated with RCC, are related to tumour growth/survival (EGFR, cyclin D1, insulin-like growth factor-binding protein-1 and a MLRQ sub-unit homologue of the NADH:ubiquinone oxidoreductase complex), angiogenesis (vascular endothelial growth factor, endothelial PAS domain protein-1, ceruloplasmin, angiopoietin-related protein 2) and cell adhesion/motility (protocadherin 2, cadherin 6, autotaxin, vimentin, lysyl oxidase and semaphorin G). Since some of these genes were overexpressed in 80–90% of RCC tissues, it is important to evaluate their suitability as therapeutic targets. © 2001 Cancer Research Campaig

    Laccase activity is proportional to the abundance of bacterial laccase-like genes in soil from subtropical arable land

    No full text
    Laccase enzymes produced by both soil bacteria and fungi play important roles in refractory organic matter turnover in terrestrial ecosystems. We investigated the abundance and diversity of fungal laccase genes and bacterial laccase-like genes in soil from subtropical arable lands, and identified which microbial group was associated with laccase activity. Compared with fungal laccase genes, the bacterial laccase-like genes had greater abundance, richness and Shannon-Wiener diversity. More importantly, laccase activity can be explained almost exclusively by the bacterial laccase-like genes, and their abundance had significant linear relationship with laccase activity. Thus, bacterial laccase-like gene has great potential to be used as a sensitive indicator of laccase enzyme for refractory organic matter turnover in subtropical arable lands.</p

    Soil Microbes Compete Strongly with Plants for Soil Inorganic and Amino Acid Nitrogen in a Semiarid Grassland Exposed to Elevated CO2 and Warming

    No full text
    Free amino acids (FAAs) in soil are an important N source for plants, and abundances are predicted to shift under altered atmospheric conditions such as elevated CO2. Composition, plant uptake capacity, and plant and microbial use of FAAs relative to inorganic N forms were investigated in a temperate semiarid grassland exposed to experimental warming and free-air CO2 enrichment. FAA uptake by two dominant grassland plants, Bouteloua gracilis and Artemesia frigida, was determined in hydroponic culture. B. gracilis and microbial N preferences were then investigated in experimental field plots using isotopically labeled FAA and inorganic N sources. Alanine and phenylalanine concentrations were the highest in the field, and B. gracilis and A. frigida rapidly consumed these FAAs in hydroponic experiments. However, B. gracilis assimilated little isotopically labeled alanine, ammonium and nitrate in the field. Rather, soil microbes immobilized the majority of all three N forms. Elevated CO2 and warming did not affect plant or microbial uptake. FAAs are not direct sources of N for B. gracilis, and soil microbes outcompete this grass for organic and inorganic N when N is at peak demand within temperate semiarid grasslands
    corecore