30 research outputs found
A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator
When electrons are subject to a large external magnetic field, the
conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an
electronic excitation gap is generated in the sample bulk, but metallic
conduction is permitted at the boundary. Recent theoretical models suggest that
certain bulk insulators with large spin-orbit interactions may also naturally
support conducting topological boundary states in the extreme quantum limit,
which opens up the possibility for studying unusual quantum Hall-like phenomena
in zero external magnetic field. Bulk BiSb single crystals are
expected to be prime candidates for one such unusual Hall phase of matter known
as the topological insulator. The hallmark of a topological insulator is the
existence of metallic surface states that are higher dimensional analogues of
the edge states that characterize a spin Hall insulator. In addition to its
interesting boundary states, the bulk of BiSb is predicted to
exhibit three-dimensional Dirac particles, another topic of heightened current
interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report
the first direct observation of massive Dirac particles in the bulk of
BiSb, locate the Kramers' points at the sample's boundary and
provide a comprehensive mapping of the topological Dirac insulator's gapless
surface modes. These findings taken together suggest that the observed surface
state on the boundary of the bulk insulator is a realization of the much sought
exotic "topological metal". They also suggest that this material has potential
application in developing next-generation quantum computing devices.Comment: 16 pages, 3 Figures. Submitted to NATURE on 25th November(2007
Growth and Competitive Effects of Centaurea stoebe Populations in Response to Simulated Nitrogen Deposition
Increased resource availability can promote invasion by exotic plants, raising concerns over the potential effects of global increases in the deposition of nitrogen (N). It is poorly understood why increased N favors exotics over natives. Fast growth may be a general trait of good invaders and these species may have exceptional abilities to increase growth rates in response to N deposition. Additionally, invaders commonly displace locals, and thus may have inherently greater competitive abilities. The mean growth response of Centaurea stoebe to two N levels was significantly greater than that of North American (NA) species. Growth responses to N did not vary among C. stoebe populations or NA species. Without supplemental N, NA species were better competitors than C. stoebe, and C. stoebe populations varied in competitive effects. The competitive effects of C. stoebe populations increased with N whereas the competitive effects of NA species decreased, eliminating the overall competitive advantage demonstrated by NA species in soil without N added. These results suggest that simulated N deposition may enhance C. stoebe invasion through increasing its growth and relative competitive advantage, and also indicate the possibility of local adaptation in competitive effects across the introduced range of an invader
The Female Lower Genital Tract Is a Privileged Compartment with IL-10 Producing Dendritic Cells and Poor Th1 Immunity following Chlamydia trachomatis Infection
While a primary genital tract infection with C. trachomatis stimulates partial-protection against re-infection, it may also result in severe inflammation and tissue destruction. Here we have dissected whether functional compartments exist in the genital tract that restrict Th1-mediated protective immunity. Apart from the Th1-subset, little is known about the role of other CD4+ T cell subsets in response to a genital tract chlamydial infection. Therefore, we investigated CD4+ T cell subset differentiation in the genital tract using RT-PCR for expression of critical transcription factors and cytokines in the upper (UGT) and lower genital tract (LGT) of female C57BL/6 mice in response to C. trachomatis serovar D infection. We found that the Th1 subset dominated the UGT, as IFN-Ξ³ and T-bet mRNA expression were high, while GATA-3 was low following genital infection with C. trachomatis serovar D. By contrast, IL-10 and GATA-3 mRNA dominated the LGT, suggesting the presence of Th2 cells. These functional compartments also attracted regulatory T cells (Tregs) differently as increased FoxP3 mRNA expression was seen primarily in the UGT. Although IL-17A mRNA was somewhat up-regulated in the LGT, no significant change in RORΞ³-t mRNA expression was observed, suggesting no involvement of Th17 cells. The dichotomy between the LGT and UGT was maintained during infection by IL-10 because in IL-10-deficient mice the distinction between the two compartments was completely lost and a dramatic shift to the predominance of Th1 cells in the LGT occurred. Unexpectedly, the major source of IL-10 was CD11c+ CD11b+ DC, probably creating an anti-inflammatory privileged site in the LGT