44 research outputs found

    Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    No full text
    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations

    Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars

    Get PDF
    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars

    The light-toned stratified sedimentary rock exposures in western Juventae Chasma, Mars, in context

    No full text
    Juventae Chasma, an isolated depression northeast of the Valles Marineris trough system, hosts four mounds of light-toned, layered materials. These are erosional remnants interpreted to consist of sedimentary rocks. The geological setting of Juventae Chasma is a complex amalgamation of terrains and surfaces of different morphologies, ages, and structures. Most previous published studies assumed or interpreted that the light-toned mound-forming materials were deposited in the chasm after it opened or began to open. Here, we use detailed observations of the geologic setting, the nature of chasm wall rocks, and the distribution and nature of the contacts of the light-toned materials with adjacent geologic materials to argue that the light-toned mounds in Juventae Chasma are, more likely, remnants of light-toned materials that existed in the subsurface before the chasm opened up. The rock cut by the chasm was not a monolithic unit, (e.g., lava flows) and might have included both light-toned and dark-toned sedimentary rocks bearing a range of diagenetic properties. The light-toned materials were deposited (as clasts, precipitates, or both) within craters or depressions that were filled, buried, lithified, and then exposed when Juventae Chasma formed. Because the sedimentary rock types and stratal package properties differ from one mound to the next, the buried craters or depressions could have existed at different times and provide sedimentary records of different environments that existed at different times during the planet's early history (Noachian Period). Upon exposure, these materials, as well as chasm wall rocks and chaotic terrain blocks, underwent differential erosion as a function of rock physical properties to produce the geomorphic expressions observed today. (C) 2018 Elsevier Inc. All rights reserved

    Star Dune

    No full text

    Aeolian Sand Deposits

    No full text

    Encounters with an unearthly mudstone: Understanding the first mudstone found on Mars

    No full text
    The Sheepbed mudstone forms the base of the strata examined by the Curiosity rover in Gale Crater on Mars, and is the first bona fide mudstone known on another planet. From images and associated data, this contribution proposes a holistic interpretation of depositional regime, diagenesis and burial history. A lake basin probably received sediment pulses from alluvial fans. Bed cross-sections show millimetre to centimetre-scale layering due to distal pulses of fluvial sediment injections (fine-grained hyperpycnites), fall-out from river plumes, and some aeolian supply. Diagenetic features include mineralized synaeresis cracks and millimetre-scale nodules, as well as stratiform cementation. Clay minerals were initially considered due to in situ alteration, but bulk rock chemistry and mineralogy suggests that sediments were derived from variably weathered source rocks that probably contained pre-existing clay minerals. X-ray diffraction analyses show contrasting clay mineralogy in closely spaced samples, consistent with at least partial detrital supply of clay minerals. A significant (ca 30 wt%) amorphous component is consistent with little post-depositional alteration. Theoretical modelling of diagenetic reactions, as well as kinetic considerations, suggest that the bulk of diagenetic clay mineral formation occurred comparatively late in diagenesis. Diagenetic features (synaeresis cracks and nodules) were previously thought to reflect early diagenetic gas formation, but an alternative scenario of synaeresis crack formation via fabric collapse of flocculated clays appears more likely. The observed diagenetic features, such as solid nodules, hollow nodules, matrix cement and ‘raised ridges’ (synaeresis cracks) can be explained with progressive alteration of olivine/glass in conjunction with centrifugal and counter diffusion of reactive species. Anhydrite-filled fractures in the Sheepbed mudstone occurred late in diagenesis when fluid pressures built up to exceed lithostatic pressure. Generating fluid overpressure by burial to facilitate hydraulic fracturing suggests a burial depth of at least 1000 m for the underlying strata that supplied these fluids
    corecore