18 research outputs found

    Field trajectories proposals as a tool for increasing work efficiency and sustainable land management

    Get PDF
    ArticleTogether with the requirement for higher productivity the average performance and the weight of agricultural machines are increasing. Agricultural land is increasingly exposed to pressures caused by agricultural machinery. The heavy agricultural machinery passes across a field are frequently associated with technogenic soil compaction. Soil compaction is one of the main problems of modern agriculture. From the previous measuring of the traffic intensity it was found 86.13 % of the total field area was run - o ver with a machine at least once a year, when using conventional tillage and 63.75 % of the total field area was run - over when using direct seeding technology, with dependence on the working width of the machines. Field passes are inevitable in present agri culture. As a result of the increase of total machines weight, it is necessary to optimize the traffic lines trajectories and limit the entries of the machines in the field. At present, the choice of traffic lines direction is based primarily on the experi ence of drivers or the practice of farmers. There are a number of influences that affect the machine work efficiency. Monitoring of the tractor, on an irregular 8 fields showed the following results. Eight - meter working width tiller or seeder brought short ening of total length of turns at headlands with the change in trajectory azimuth. For purposes of measuring the monitored tractors were equipped with monitoring units ITineris. An overview of the chosen directions of the trajectories and the lengths of wo rking and non - working passes was obtained. Based on the shape of the plot, the trajectory of the lines was also modelled. Suitable traffic lines directions in terms of the ratio of work and non - work passes were searched. Based on records of real trajectori es, the ratio of working and non - working path ranged between 6.3 and 15.2%. It was obvious from the results that the shortening of non - working passes and turns in comparison with the originally chosen trajectory directions was achieved by optimization. Thi s was especially valid for complex shapes of fields. Trajectory optimization leads to a reduction of total le n g th of path in all cases. The reduction in total length of path ranged from 69.7 m to 1 , 004.8 m. Changing the length of the working path ranged fr om 10.9 m to 264.9 m with the change in azimuth. The extension was observed in three cases. The highest part on the change of the overall length of the path presented nonworking rides

    Dependence of Conditioner Power Input on Mowing Machine Material Feed Rate

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a Technical Paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 5 (2003): F. Kumhala, M. Kroulik, and V. Prosek. Dependence of Conditioner Power Input on Mowing Machine Material Feed Rate. Vol. V. July 2003

    The influence of agricultural traffic on soil infiltration rates

    No full text
    The objective of the study was to investigate the effect of agricultural machinery passes on soil infiltration rate. The experiment was conducted in a large covered area (Soil Hall) with the sandy loam soil type. Four compactions levels were applied: control, one, two and three tractor passes. The infiltration measurements were conducted using two methods: Simplified Falling-Head (SFH) and Mini Disk (MD). The other supporting measurements were disturbed soil samples and cone index measurements. Based on the SFH method it was observed that as the number of passes increased from 0 to 3 the infiltration rate decreased. The MD results also decreased with the increase in the number of passes. The bulk densities (at 0-0.07 m depth) increased with the number of tractor passes, under the conditions of soil gravimetric moisture content ranging between 14 and 18% vol. The cone index values at the depth of 0-0.05 m increased with the number of passes. When comparing the results obtained using the MD and SFH, a strong relationship was not found. It could be concluded that the SFH method might be more robust and appropriate for determining the effect of the number of tractor passes on the soil water infiltration in these conditions
    corecore