33 research outputs found

    Activity of Pterostilbene Metabolites against Liver Steatosis in Cultured Hepatocytes

    Get PDF
    Pterostilbene is a dimethyl ether derivative of resveratrol, less metabolized than its analogue, due to the substitution of two hydroxyl groups with methoxyl groups. Nevertheless, the amounts of pterostilbene phase II metabolites found in plasma and tissues are higher than those of the parent compound. The first aim of this study was to assess whether pterostilbene-4′-O-glucuronide (PT-G) and pterostilbene-4′-O-sulfate (PT-S) were able to prevent triglyceride accumulation in AML12 (alpha mouse liver 12) hepatocytes. This being the case, we aimed to analyze the mechanisms involved in their effects. For this purpose, an in vitro model mimicking the hepatocyte situation in fatty liver was developed by incubating mouse AML12 hepatocytes with palmitic acid (PA). For cell treatments, hepatocytes were incubated with 1, 10 or 25 µM of pterostilbene, pterostilbene-4′-O-glucuronide or pterostilbene-4′-O-sulfate for 18 h. Triglycerides and cell viability were assessed by a commercial kit and crystal violet assay, respectively. Protein expression of enzymes and transporters involved in triglyceride metabolism was analyzed by immunoblot. The results showed for the first time the anti-steatotic effect of pterostilbene metabolites and thus, that they contribute to the preventive effect induced by pterostilbene on steatosis in in vivo models. This anti-steatotic effect is mainly due to the inhibition of de novo lipogenesis.This research was funded by Ministerio de Economía y Competitividad-Fondo Europeo de Desarrollo Regional (grant number AGL-2015-65719-R MINECO/FEDER, UE), Instituto de Salud Carlos III CIBERobn (grant number CB12/03/30007) and University of the Basque Country (grant number GIU 18/173)

    Resveratrol Metabolites Are Able to Reduce Steatosis in Cultured Hepatocytes

    Get PDF
    Steatosis is characterized primarily by excessive lipid accumulation in the form of triglycerides in the liver. Although resveratrol shows a low bioavailability, it has significant positive effects on steatosis. The aim of this study was to analyze whether some phase II and microbial resveratrol metabolites (trans-resveratrol-4′-O-glucuronide (R-4G); trans-resveratrol-3-O-glucuronide (R-3G); trans-resveratrol-3-O-sulfate (R-S) and dihydro-resveratrol (DH-R) were effective in reducing hepatocyte fat accumulation. An in vitro model mimicking the hepatocyte situation in fatty liver was developed by incubating mouse AML12 hepatocytes with palmitic acid (PA). For cell treatments, hepatocytes were incubated with 1, 10, or 25 µM resveratrol or its metabolites. Triglycerides and cell viability were assessed using commercial kits. Protein expression of enzymes and transporters involved in triglyceride metabolism were analyzed by western blot. We show for the first time that resveratrol and all the tested metabolites, at 1 µM, partially prevented lipid accumulation induced by the saturated fatty acid PA in AML12 hepatocytes. This effect was mainly due to the inhibition of de novo lipogenesis. This demonstrates that the low bioavailability of resveratrol is not as big a problem as it was thought to be, because resveratrol metabolites contribute to the delipidating effects of the parent compound.This research was funded by Ministerio de Economía y Competitividad-Fondo Europeo de Desarrollo Regional, grant number AGL-2015-65719-R; Instituto de Salud Carlos III CIBERobn, grant number CB12/03/30007; University of the Basque Country, grant number GIU 18/173

    Beneficial Effects of ε-Viniferin on Obesity and Related Health Alterations

    Get PDF
    Viniferin is a phenolic compound belonging to the group of stilbenoids. In particular, ε-viniferin is a dimer of resveratrol, found in many plant genders, among which grapes (Vitis vinifera) are a primary source. Due to the fact that ε-viniferin is mainly present in the woody parts of plants, their use as a source of this bioactive compound is a very interesting issue in a circular economy. Both, in vitro studies carried out in pre-adipocytes and mature adipocytes and in vivo studies addressed in mice show that ε-viniferin is able to reduce fat accumulation. Moreover, it prevents the development of some obesity co-morbidities, such as type 2 diabetes, dyslipidemias, hypertension and fatty liver. ε-viniferin can be absorbed orally, but it shows a very low bioavailability. In this scenario, further research on animal models is needed to confirm the effects reported in a great number of studies; to determine which metabolites are involved, including the main one responsible for the biological effects observed and the mechanisms that justify these effects. In a further phase, human studies should be addressed in order to use ε-viniferin as a new tool for obesity management, as a nutraceutical or to be included in functional foods.This research was funded by CIBEROBN under Grant CB12/03/30007 and the Government of the Basque Country (IT1482-22)

    In Vivo Genotoxicity Evaluation of a Stilbene Extract Prior to Its Use as a Natural Additive: A Combination of the Micronucleus Test and the Comet Assay

    Get PDF
    Genotoxic data of substances that could be used as food additives are required by the European Food Safety Authority. In this sense, the use of an extract from grapevine shoots containing a stilbene richness of 99% (ST-99), due to its antioxidant and antibacterial activities, has been proposed as an alternative to sulfur dioxide in wine. The aim of this work was to study, for the first time, the in vivo genotoxic effects produced in rats orally exposed to 90, 180, or 360 mg ST-99/kg body weight at 0, 24, and 45 h. The combination of micronucleus assay in bone marrow (OECD 474) and standard (OECD 489) and enzyme-modified comet assay was used to determine the genotoxicity on cells isolated from stomach, liver, and blood of exposed animals. The ST-99 revealed no in vivo genotoxicity. These results were corroborated by analytical studies that confirm the presence of stilbenes and their metabolites in plasma and tissues. Moreover, to complete these findings, a histopathological study was performed under light microscopy in liver and stomach showing only slight modifications in both organs at the highest concentration used. The present work confirms that this extract is not genotoxic presenting a good profile for its potential application as a preservative in the wine industry.España Ministerio de Economía, Industria y Competitividad and INIA RTA2015-00005-C02-0

    J. Agric. Food Chem.

    Get PDF
    Stilbene metabolites are attracting great interest because many of them exhibit similar or even stronger biological effects than their parent compounds. Furthermore, the metabolized forms are predominant in biological fluids; therefore, their study is highly relevant. After hemisynthesis production, isolation, and structural elucidation, three glucuronide metabolites for oxyresveratrol (ORV) were formed: trans-ORV-4′-O-glucuronide, trans-ORV-3-O-glucuronide, and trans-ORV-2′-O-glucuronide. In addition, two glucuronide metabolites were obtained for gnetol (GN): trans-GN-2′-O-glucuronide and trans-GN-3-O-glucuronide. When the metabolism of ORV and GN is studied in vitro by human and rat hepatic enzymes, four of the five hemisynthesized compounds were identified and quantified. Human enzymes glucuronidated preferably at the C-2′ position, whereas rat enzymes do so at the C-3 position. In view of these kinetic findings, rat enzymes have a stronger metabolic capacity than human enzymes. Finally, ORV, GN, and their glucuronide metabolites (mainly at the C-3 position) decreased nitric oxide, reactive oxygen species, interleukin 1β, and tumor necrosis factor α production in lipopolysaccharide-stimulated macrophages

    Resveratrol, ε-Viniferin, and Vitisin B from Vine: Comparison of Their In Vitro Antioxidant Activities and Study of Their Interactions

    No full text
    The control of oxidative stress with natural active substances could limit the development of numerous pathologies. Our objective was to study the antiradical effects of resveratrol (RSV), ε-viniferin (VNF), and vitisin B (VB) alone or in combination, and those of a standardized stilbene-enriched vine extract (SSVE). In the DPPH-, FRAP-, and NO-scavenging assays, RSV presented the highest activity with an IC50 of 81.92 ± 9.17, 13.36 ± 0.91, and 200.68 ± 15.40 µM, respectively. All binary combinations resulted in additive interactions in the DPPH- and NO-scavenging assays. In the FRAP assay, a synergic interaction for RSV + VNF, an additive for VNF + VB, and an antagonistic for RSV + VB were observed. The ternary combination of RSV + VNF + VB elicited an additive interaction in the DPPH assay and a synergic interaction in the FRAP- and NO-scavenging assays. There was no significant difference between the antioxidant activity of the SSVE and that of the combination of RSV + VNF. In conclusion, RSV presented the highest effects, followed by VNF and VB. The interactions revealed additive or synergistic effects, depending on the combination of the stilbenes and assay

    Prediction of the penetration depth of multi-lamellar liposomes in artificial skin. Application to the vectorization of corticosteroid in human skin

    No full text
    Our previous work showed that the size, elasticity and charge of multi-lamellar liposomes (MLLs) could not be considered separately to predict the fate of MLLs in the skin [1]. Based on this study, we developed several MLLs formulations containing a corticosteroid, betamethasone 17-valerate (B17) to transport the drug into the stratum corneum, living epidermis, dermis or through the skin. MLLs encapsulation efficiency was found to exceed 74 +/- 3 % in all cases. In addition, we showed that MLLs protected the corticosteroid from thermal degradation. Comparing the penetration depth of all MLLs within artificial skin measured by Raman imaging, we established an equation for its determination, given the MLLs elasticity and size. This equation was verified experimentally on human explants: quantification of B17 in each skin layer, as well as its transdermal passage by ultra-high performance liquid chromatography, confirmed that B17 was predominantly and significantly transported in the desired layer. Eventually, we showed the benefits in using B17-loaded MLLs instead of a B17-containing pharmaceutical cream in terms of B17 penetration and thermal degradation

    J Physiol Biochem

    No full text
    Stilbenes are secondary metabolites belonging to the polyphenol family. Those compounds are derived from the glycosylation, prenylation, methoxylation, hydroxylation, or also oligomerization of the well-known trans-resveratrol. One of them, trans-epsilon-viniferin (ε-viniferin), is a trans-resveratrol dimer that arouses the interest of researchers in the field of human health. The biosynthesis of this molecule in various plant species, particularly high in the Vitaceae family, explains its presence in some red wines, which represent the main source of ε-viniferin in the human diet. Although bioavailability studies have shown poor absorption and high metabolism of this stilbene, multiple studies demonstrated its biological properties. The ε-viniferin exhibits strong activities against inflammatory and oxidative stress. Moreover, various studies have reported great activity of this compound not only in a wide range of disorders and diseases, such as cancer, obesity, and its associated disorders, but also in vascular diseases and neurodegeneration, for which the pathophysiology is closely related to the state of oxidation and inflammation. This review provides a state of art of the main activities of ε-viniferin demonstrated in vitro and in vivo, highlighting that this resveratrol dimer could be a promising candidate for future functional foods or supplement foods used for the management of many chronic diseases of concern in terms of public health

    Airborne methyl jasmonate induces stilbene accumulation in leaves and berries of grapevine plants

    No full text
    International audienc
    corecore