25 research outputs found

    Comparative Demography of the Spider Mite, Oligonychus afrasiaticus, on four Date Palm Varieties in Southwestern Tunisia

    Get PDF
    The date palm mite, Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae), is a serious pest of palm date fruits. Life cycle, fecundity, and longevity of this mite were studied on fruits of four date palms, Phoenix dactylifera L. (Arecales: Arecaceae)(varieties: Deglet Noor, Alig, Kentichi, and Besser), under laboratory conditions at 27 = 1 °C, 60 ± 10% RH. Total development time of immature female was shorter on Deglet Noor fruits than on the other cultivars. O. afrasiaticus on Deglet Noor had the highest total fecundity per female, while low fecundity values occurred on Besser. The comparison of intrinsic rates of natural increase (rm), net reproductive rates (Ro), and the survival rates of immature stage of O. afrasiaticus on the host plants suggests that O. afrasiaticus performs better on Deglet Noor fruits. The mite feeding on Alig showed the lowest intrinsic rate of natural population increase (rm = 0.103 day 1). The estimation of difference in susceptibility of cultivars to O. afrasiaticus is crucial for developing efficient pest control programs. Indeed, less susceptible cultivars can either be left unsprayed or sprayed at low threshold

    Variation in Herbivory-induced Volatiles Among Cucumber (Cucumis sativus L.) Varieties has Consequences for the Attraction of Carnivorous Natural Enemies

    Get PDF
    In response to herbivory by arthropods, plants emit herbivory-induced volatiles that attract carnivorous enemies of the inducing herbivores. Here, we compared the attractiveness of eight cucumber varieties (Cucumis sativus L.) to Phytoseiulus persimilis predatory mites after infestation of the plants with herbivorous spider mites (Tetranychus urticae) under greenhouse conditions. Attractiveness differed considerably, with the most attractive variety attracting twice as many predators as the least attractive variety. Chemical analysis of the volatiles released by the infested plants revealed significant differences among varieties, both in quantity and quality of the emitted blends. Comparison of the attractiveness of the varieties with the amounts of volatiles emitted indicated that the quality (composition) of the blend is more important for attraction than the amount of volatiles emitted. The amount of (E)-β-ocimene, (E,E)-TMTT, and two other, yet unidentified compounds correlated positively with the attraction of predatory mites. Quantities of four compounds negatively correlated with carnivore attraction, among them methyl salicylate, which is known to attract the predatory mite P. persimilis. The emission of methyl salicylate correlated with an unknown compound that had a negative correlation with carnivore attraction and hence could be masking the attractiveness of methyl salicylate. The results imply that the foraging success of natural enemies of pests can be enhanced by breeding for crop varieties that release specific volatiles

    Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts

    Get PDF
    Background: Insect herbivory induces plant odors that attract herbivores ’ natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivoreinduced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings: We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the noninduced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance: We conclude that the predatory mites perceive odors as a synthetic whole and that th

    Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis

    Get PDF
    Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents

    Geotaxis and leaf-surface preferences mitigate negative effects of a predatory mite on an herbivorous mite

    No full text
    Reproductive success and population growth of an herbivorous mite are limited by activities of phytoseiid predators. However, occurrences on upper versus lower leaf surfaces are sometimes mismatched between these prey and predators. The mismatch potentially mitigates predation risk for the prey species. We assessed factors that affect mite distributions on leaf surfaces, testing whether the presence of the phytoseiid mite Phytoseius nipponicus alters the leaf-surface distribution and reproductive success of the herbivorous false spider mite Brevipalpus obovatus. The host plant was Viburnum erosum var. punctatum (Adoxaceae). Leaves were set in natural (TRUE) and reversed (upside down; INVERTED) orientations using experimental devices. Both surfaces were accessible to mites. We detected lower and abaxial leaf-surface preferences in P. nipponicus. In contrast, upper and adaxial surfaces were preferred by B. obovatus. Thus, prey and predatory mites accumulated on different sides of leaves. Presence of the predator also indirectly decreased egg production in B. obovatus. Brevipalpus obovatus females actively avoided leaf surfaces with elevated predator numbers; these females shifted their distributions and changed oviposition sites to leaf surfaces with fewer predators. In consequence, B. obovatus eggs on the upper sides of leaves were less frequently preyed upon than were those on lower sides. We suggest that upper leaf-surface exploitation in this particular herbivorous mite species mitigates predation risk from phytoseiid mites, which prefer lower leaf surfaces
    corecore