6,745 research outputs found

    Ultrafast demagnetization in bulk versus thin films: An ab initio study

    Get PDF
    We report on {\it ab-initio} simulations of the quantum dynamics of electronic charge and spin when subjected to intense laser pulses. By performing separate calculations for a Ni thin film and bulk Ni, we conclude that surface effects have a dramatic influence on amplifying the laser induced demagnetization. We show that the reason for this amplification is due to increased spin-currents on the surface of the thin film. This enhancement is a direct consequence of the broken symmetry originating from the surface formation. We find that the underlying physics of demagnetization, during the early femtoseconds, for both bulk and thin film is dominated by spin-flips induced by spin-orbit coupling. After the first ∌40\sim 40 fs this changes in that the dominant cause of demagnetization is the flow of spin-currents, which leads to stronger demagnetization in the film compared to that of the bulk.Comment: 12 pages, 3 figure

    Parameterized optimized effective potential for atoms

    Full text link
    The optimized effective potential equations for atoms have been solved by parameterizing the potential. The expansion is tailored to fulfill the known asymptotic behavior of the effective potential at both short and long distances. Both single configuration and multi configuration trial wave functions are implemented. Applications to several atomic systems are presented improving previous works. The results here obtained are very close to those calculated in either the Hartree-Fock and the multi configurational Hartree-Fock framework.Comment: 8 pages, 3 figure

    Analysis of OPM potentials for multiplet states of 3d transition metal atoms

    Full text link
    We apply the optimized effective potential method (OPM) to the multiplet energies of the 3dn^n transition metal atoms, where the orbital dependence of the energy functional with respect to orbital wave function is the single-configuration HF form. We find that the calculated OPM exchange potential can be represented by the following two forms. Firstly, the difference between OPM exchange potentials of the multiplet states can be approximated by the linear combination of the potentials derived from the Slater integrals F2(3d,3d)F^2({\rm 3d,3d}) and F4(3d,3d)F^4({\rm 3d,3d}) for the average energy of the configuration. Secondly, the OPM exchange potential can be expressed as the linear combination of the OPM exchange potentials of the single determinants.Comment: 15 pages, 6 figures, to be published in J. Phys.

    A Centre-Stable Manifold for the Focussing Cubic NLS in R1+3R^{1+3}

    Get PDF
    Consider the focussing cubic nonlinear Schr\"odinger equation in R3R^3: iψt+Δψ=âˆ’âˆŁÏˆâˆŁ2ψ. i\psi_t+\Delta\psi = -|\psi|^2 \psi. It admits special solutions of the form eitαϕe^{it\alpha}\phi, where ϕ\phi is a Schwartz function and a positive (ϕ>0\phi>0) solution of −Δϕ+αϕ=ϕ3. -\Delta \phi + \alpha\phi = \phi^3. The space of all such solutions, together with those obtained from them by rescaling and applying phase and Galilean coordinate changes, called standing waves, is the eight-dimensional manifold that consists of functions of the form ei(v⋅+Γ)ϕ(⋅−y,α)e^{i(v \cdot + \Gamma)} \phi(\cdot - y, \alpha). We prove that any solution starting sufficiently close to a standing wave in the ÎŁ=W1,2(R3)∩∣x∣−1L2(R3)\Sigma = W^{1, 2}(R^3) \cap |x|^{-1}L^2(R^3) norm and situated on a certain codimension-one local Lipschitz manifold exists globally in time and converges to a point on the manifold of standing waves. Furthermore, we show that \mc N is invariant under the Hamiltonian flow, locally in time, and is a centre-stable manifold in the sense of Bates, Jones. The proof is based on the modulation method introduced by Soffer and Weinstein for the L2L^2-subcritical case and adapted by Schlag to the L2L^2-supercritical case. An important part of the proof is the Keel-Tao endpoint Strichartz estimate in R3R^3 for the nonselfadjoint Schr\"odinger operator obtained by linearizing around a standing wave solution.Comment: 56 page

    A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    Get PDF
    International audienceAtmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces

    Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates

    Get PDF
    We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La2−x_{2-x}Srx_xCuO4_4 and La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No kzk_z dispersion is observed along the nodal direction, whereas a significant antinodal kzk_z dispersion is identified. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van-Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2−x_{2-x}Srx_xCuO4_4 can not be assigned to the van-Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat
    • 

    corecore