155 research outputs found

    Dominoes

    Get PDF

    A structural approach to kernels for ILPs: Treewidth and Total Unimodularity

    Get PDF
    Kernelization is a theoretical formalization of efficient preprocessing for NP-hard problems. Empirically, preprocessing is highly successful in practice, for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this, previous work studied the existence of kernelizations for ILP related problems, e.g., for testing feasibility of Ax <= b. In contrast to the observed success of CPLEX, however, the results were largely negative. Intuitively, practical instances have far more useful structure than the worst-case instances used to prove these lower bounds. In the present paper, we study the effect that subsystems with (Gaifman graph of) bounded treewidth or totally unimodularity have on the kernelizability of the ILP feasibility problem. We show that, on the positive side, if these subsystems have a small number of variables on which they interact with the remaining instance, then we can efficiently replace them by smaller subsystems of size polynomial in the domain without changing feasibility. Thus, if large parts of an instance consist of such subsystems, then this yields a substantial size reduction. We complement this by proving that relaxations to the considered structures, e.g., larger boundaries of the subsystems, allow worst-case lower bounds against kernelization. Thus, these relaxed structures can be used to build instance families that cannot be efficiently reduced, by any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium on Algorithms (ESA 2015

    On vertex ranking for permutation and other graphs

    Get PDF

    Treewidth and minimum fill-in on d-trapezoid graphs

    Get PDF

    On the stable degree of graphs

    No full text
    We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree

    Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes

    Full text link
    Many fixed-parameter tractable algorithms using a bounded search tree have been repeatedly improved, often by describing a larger number of branching rules involving an increasingly complex case analysis. We introduce a novel and general search strategy that branches on the forbidden subgraphs of a graph class relaxation. By using the class of P4P_4-sparse graphs as the relaxed graph class, we obtain efficient bounded search tree algorithms for several parameterized deletion problems. We give the first non-trivial bounded search tree algorithms for the cograph edge-deletion problem and the trivially perfect edge-deletion problems. For the cograph vertex deletion problem, a refined analysis of the runtime of our simple bounded search algorithm gives a faster exponential factor than those algorithms designed with the help of complicated case distinctions and non-trivial running time analysis [21] and computer-aided branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and Applications (DMAA

    On the (non-)existence of polynomial kernels for Pl-free edge modification problems

    Full text link
    Given a graph G = (V,E) and an integer k, an edge modification problem for a graph property P consists in deciding whether there exists a set of edges F of size at most k such that the graph H = (V,E \vartriangle F) satisfies the property P. In the P edge-completion problem, the set F of edges is constrained to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no constraint is imposed on F in the P edge-edition problem. A number of optimization problems can be expressed in terms of graph modification problems which have been extensively studied in the context of parameterized complexity. When parameterized by the size k of the edge set F, it has been proved that if P is an hereditary property characterized by a finite set of forbidden induced subgraphs, then the three P edge-modification problems are FPT. It was then natural to ask whether these problems also admit a polynomial size kernel. Using recent lower bound techniques, Kratsch and Wahlstrom answered this question negatively. However, the problem remains open on many natural graph classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom asked whether the result holds when the forbidden subgraphs are paths or cycles and pointed out that the problem is already open in the case of P4-free graphs (i.e. cographs). This paper provides positive and negative results in that line of research. We prove that parameterized cograph edge modification problems have cubic vertex kernels whereas polynomial kernels are unlikely to exist for the Pl-free and Cl-free edge-deletion problems for large enough l

    Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs

    Get PDF
    The Multicut problem, given a graph G, a set of terminal pairs T={(si,ti)  1ir}\mathcal{T}=\{(s_i,t_i)\ |\ 1\leq i\leq r\}, and an integer pp, asks whether one can find a cutset consisting of at most pp nonterminal vertices that separates all the terminal pairs, i.e., after removing the cutset, tit_i is not reachable from sis_i for each 1ir1\leq i\leq r. The fixed-parameter tractability of Multicut in undirected graphs, parameterized by the size of the cutset only, has been recently proved by Marx and Razgon [SIAM J. Comput., 43 (2014), pp. 355--388] and, independently, by Bousquet, Daligault, and Thomassé [Proceedings of STOC, ACM, 2011, pp. 459--468], after resisting attacks as a long-standing open problem. In this paper we prove that Multicut is fixed-parameter tractable on directed acyclic graphs when parameterized both by the size of the cutset and the number of terminal pairs. We complement this result by showing that this is implausible for parameterization by the size of the cutset only, as this version of the problem remains W[1]W[1]-hard

    Inclusive One Jet Production With Multiple Interactions in the Regge Limit of pQCD

    Full text link
    DIS on a two nucleon system in the regge limit is considered. In this framework a review is given of a pQCD approach for the computation of the corrections to the inclusive one jet production cross section at finite number of colors and discuss the general results.Comment: 4 pages, latex, aicproc format, Contribution to the proceedings of "Diffraction 2008", 9-14 Sep. 2008, La Londe-les-Maures, Franc
    corecore