155 research outputs found
A structural approach to kernels for ILPs: Treewidth and Total Unimodularity
Kernelization is a theoretical formalization of efficient preprocessing for
NP-hard problems. Empirically, preprocessing is highly successful in practice,
for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this,
previous work studied the existence of kernelizations for ILP related problems,
e.g., for testing feasibility of Ax <= b. In contrast to the observed success
of CPLEX, however, the results were largely negative. Intuitively, practical
instances have far more useful structure than the worst-case instances used to
prove these lower bounds.
In the present paper, we study the effect that subsystems with (Gaifman graph
of) bounded treewidth or totally unimodularity have on the kernelizability of
the ILP feasibility problem. We show that, on the positive side, if these
subsystems have a small number of variables on which they interact with the
remaining instance, then we can efficiently replace them by smaller subsystems
of size polynomial in the domain without changing feasibility. Thus, if large
parts of an instance consist of such subsystems, then this yields a substantial
size reduction. We complement this by proving that relaxations to the
considered structures, e.g., larger boundaries of the subsystems, allow
worst-case lower bounds against kernelization. Thus, these relaxed structures
can be used to build instance families that cannot be efficiently reduced, by
any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium
on Algorithms (ESA 2015
On the stable degree of graphs
We define the stable degree s(G) of a graph G by s(G)∈=∈ min max d (v), where the minimum is taken over all maximal independent sets U of G. For this new parameter we prove the following. Deciding whether a graph has stable degree at most k is NP-complete for every fixed k∈≥∈3; and the stable degree is hard to approximate. For asteroidal triple-free graphs and graphs of bounded asteroidal number the stable degree can be computed in polynomial time. For graphs in these classes the treewidth is bounded from below and above in terms of the stable degree
Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes
Many fixed-parameter tractable algorithms using a bounded search tree have
been repeatedly improved, often by describing a larger number of branching
rules involving an increasingly complex case analysis. We introduce a novel and
general search strategy that branches on the forbidden subgraphs of a graph
class relaxation. By using the class of -sparse graphs as the relaxed
graph class, we obtain efficient bounded search tree algorithms for several
parameterized deletion problems. We give the first non-trivial bounded search
tree algorithms for the cograph edge-deletion problem and the trivially perfect
edge-deletion problems. For the cograph vertex deletion problem, a refined
analysis of the runtime of our simple bounded search algorithm gives a faster
exponential factor than those algorithms designed with the help of complicated
case distinctions and non-trivial running time analysis [21] and computer-aided
branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and
Applications (DMAA
On the (non-)existence of polynomial kernels for Pl-free edge modification problems
Given a graph G = (V,E) and an integer k, an edge modification problem for a
graph property P consists in deciding whether there exists a set of edges F of
size at most k such that the graph H = (V,E \vartriangle F) satisfies the
property P. In the P edge-completion problem, the set F of edges is constrained
to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no
constraint is imposed on F in the P edge-edition problem. A number of
optimization problems can be expressed in terms of graph modification problems
which have been extensively studied in the context of parameterized complexity.
When parameterized by the size k of the edge set F, it has been proved that if
P is an hereditary property characterized by a finite set of forbidden induced
subgraphs, then the three P edge-modification problems are FPT. It was then
natural to ask whether these problems also admit a polynomial size kernel.
Using recent lower bound techniques, Kratsch and Wahlstrom answered this
question negatively. However, the problem remains open on many natural graph
classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom
asked whether the result holds when the forbidden subgraphs are paths or cycles
and pointed out that the problem is already open in the case of P4-free graphs
(i.e. cographs). This paper provides positive and negative results in that line
of research. We prove that parameterized cograph edge modification problems
have cubic vertex kernels whereas polynomial kernels are unlikely to exist for
the Pl-free and Cl-free edge-deletion problems for large enough l
Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs
The Multicut problem, given a graph G, a set of terminal pairs , and an integer , asks whether one can find a cutset consisting of at most nonterminal vertices that separates all the terminal pairs, i.e., after removing the cutset, is not reachable from for each . The fixed-parameter tractability of Multicut in undirected graphs, parameterized by the size of the cutset only, has been recently proved by Marx and Razgon [SIAM J. Comput., 43 (2014), pp. 355--388] and, independently, by Bousquet, Daligault, and Thomassé [Proceedings of STOC, ACM, 2011, pp. 459--468], after resisting attacks as a long-standing open problem. In this paper we prove that Multicut is fixed-parameter tractable on directed acyclic graphs when parameterized both by the size of the cutset and the number of terminal pairs. We complement this result by showing that this is implausible for parameterization by the size of the cutset only, as this version of the problem remains -hard
Inclusive One Jet Production With Multiple Interactions in the Regge Limit of pQCD
DIS on a two nucleon system in the regge limit is considered. In this
framework a review is given of a pQCD approach for the computation of the
corrections to the inclusive one jet production cross section at finite number
of colors and discuss the general results.Comment: 4 pages, latex, aicproc format, Contribution to the proceedings of
"Diffraction 2008", 9-14 Sep. 2008, La Londe-les-Maures, Franc
- …