1,092 research outputs found
Influence of nonlocal electrodynamics on the anisotropic vortex pinning in
We have studied the pinning force density Fp of YNi_2B_2C superconductors for
various field orientations. We observe anisotropies both between the c-axis and
the basal plane and within the plane, that cannot be explained by usual mass
anisotropy. For magnetic field , the reorientation structural
transition in the vortex lattice due to nonlocality, which occurs at a field
, manifests itself as a kink in Fp(H). When , Fp is
much larger and has a quite different H dependence, indicating that other
pinning mechanisms are present. In this case the signature of nonlocal effects
is the presence of a fourfold periodicity of Fp within the basal plane.Comment: 4 pages, 3 figure
Renormalization scale uncertainty in tne DIS 2+1 jet cross-section
The deep inelastic scattering 2+1 jet cross- section is a useful observable
for precision tests of QCD, e.g. measuring the strong coupling constant
alpha(s). A consistent analysis requires a good understanding of the
theoretical uncertainties and one of the most fundamental ones in QCD is due to
the renormalization scheme and scale ambiguity. Different methods, which have
been proposed to resolve the scale ambiguity, are applied to the 2+1 jet
cross-section and the uncertainty is estimated. It is shown that the
uncertainty can be made smaller by choosing the jet definition in a suitable
way.Comment: 24 pages, uuencoded compressed tar file, DESY 94-082, TSL-ISV-94-009
Localization of quasiparticles in a disordered vortex
We study the diffusive motion of low-energy normal quasiparticles along the
core of a single vortex in a dirty, type-II, s-wave superconductor. The physics
of this system is argued to be described by a one-dimensional supersymmetric
nonlinear sigma model, which differs from the sigma models known for disordered
metallic wires. For an isolated vortex and quasiparticle energies less than the
Thouless energy, we recover the spectral correlations that are predicted by
random matrix theory for the universality class C. We then consider the
transport problem of transmission of quasiparticles through a vortex connected
to particle reservoirs at both ends. The transmittance at zero energy exhibits
a weak localization correction reminiscent of quasi-one-dimensional metallic
systems with symmetry index beta = 1. Weak localization disappears with
increasing energy over a scale set by the Thouless energy. This crossover
should be observable in measurements of the longitudinal heat conductivity of
an ensemble of vortices under mesoscopic conditions. In the regime of strong
localization, the localization length is shown to decrease by a factor of 8 as
the quasiparticle energy goes to zero.Comment: 38 pages, LaTeX2e + epsf, 4 eps figures, one reference adde
Pattern Formation and Dynamics in Rayleigh-B\'{e}nard Convection: Numerical Simulations of Experimentally Realistic Geometries
Rayleigh-B\'{e}nard convection is studied and quantitative comparisons are
made, where possible, between theory and experiment by performing numerical
simulations of the Boussinesq equations for a variety of experimentally
realistic situations. Rectangular and cylindrical geometries of varying aspect
ratios for experimental boundary conditions, including fins and spatial ramps
in plate separation, are examined with particular attention paid to the role of
the mean flow. A small cylindrical convection layer bounded laterally either by
a rigid wall, fin, or a ramp is investigated and our results suggest that the
mean flow plays an important role in the observed wavenumber. Analytical
results are developed quantifying the mean flow sources, generated by amplitude
gradients, and its effect on the pattern wavenumber for a large-aspect-ratio
cylinder with a ramped boundary. Numerical results are found to agree well with
these analytical predictions. We gain further insight into the role of mean
flow in pattern dynamics by employing a novel method of quenching the mean flow
numerically. Simulations of a spiral defect chaos state where the mean flow is
suddenly quenched is found to remove the time dependence, increase the
wavenumber and make the pattern more angular in nature.Comment: 9 pages, 10 figure
Dimensionality dependence of the wave function statistics at the Anderson transition
The statistics of critical wave functions at the Anderson transition in three
and four dimensions are studied numerically. The distribution of the inverse
participation ratios (IPR) is shown to acquire a scale-invariant form in
the limit of large system size. Multifractality spectra governing the scaling
of the ensemble-averaged IPRs are determined. Conjectures concerning the IPR
statistics and the multifractality at the Anderson transition in a high spatial
dimensionality are formulated.Comment: 4 pages, 4 figure
Brane World Susy Breaking from String/M Theory
String and M-theory realizations of brane world supersymmetry breaking
scenarios are considered in which visible sector Standard Model fields are
confined on a brane, with hidden sector supersymmetry breaking isolated on a
distant brane. In calculable examples with an internal manifold of any volume
the Kahler potential generically contains brane--brane non-derivative contact
interactions coupling the visible and hidden sectors and is not of the no-scale
sequestered form. This leads to non-universal scalar masses and without
additional assumptions about flavor symmetries may in general induce dangerous
sflavor violation even though the Standard Model and supersymmetry branes are
physically separated. Deviations from the sequestered form are dictated by bulk
supersymmetry and can in most cases be understood as arising from exchange of
bulk supergravity fields between branes or warping of the internal geometry.
Unacceptable visible sector tree-level tachyons arise in many models but may be
avoided in certain classes of compactifications. Anomaly mediated and gaugino
mediated contributions to scalar masses are sub-dominant except in special
circumstances such as a flat or AdS pure five--dimensional bulk geometry
without bulk vector multiplets.Comment: Latex, 83 pages, references adde
Dimensional Crossover of Localisation and Delocalisation in a Quantum Hall Bar
The 2-- to 1--dimensional crossover of the localisation length of electrons
confined to a disordered quantum wire of finite width is studied in a
model of electrons moving in the potential of uncorrelated impurities. An
analytical formula for the localisation length is derived, describing the
dimensional crossover as function of width , conductance and
perpendicular magnetic field . On the basis of these results, the scaling
analysis of the quantum Hall effect in high Landau levels, and the
delocalisation transition in a quantum Hall wire are reconsidered.Comment: 12 pages, 7 figure
Energy band structure and intrinsic coherent properties in two weakly linked Bose Einstein Condensates
The energy band structure and energy splitting due to quantum tunneling in
two weakly linked Bose-Einstein condensates were calculated by using the
instanton method. The intrinsic coherent properties of Bose Josephson junction
were investigated in terms of energy splitting. For , the
energy splitting is small and the system is globally phase coherent. In the
opposite limit, , the energy splitting is large and the
system becomes a phase dissipation. Our reslults suggest that one should
investigate the coherence phenomna of BJJ in proper condition such as
.Comment: to appear in Phys. Rev. A, 2 figure
Unitary limit and quantum interference effect in disordered two-dimensional crystals with nearly half-filled bands
Based on the self-consistent -matrix approximation, the quantum
interference (QI) effect is studied with the diagrammatic technique in
weakly-disordered two-dimensional crystals with nearly half-filled bands. In
addition to the usual 0-mode cooperon and diffuson, there exist -mode
cooperon and diffuson in the unitary limit due to the particle-hole symmetry.
The diffusive -modes are gapped by the deviation from the exactly-nested
Fermi surface. The conductivity diagrams with the gapped -mode cooperon or
diffuson are found to give rise to unconventional features of the QI effect.
Besides the inelastic scattering, the thermal fluctuation is shown to be also
an important dephasing mechanism in the QI processes related with the diffusive
-modes. In the proximity of the nesting case, a power-law
anti-localization effect appears due to the -mode diffuson. For large
deviation from the nested Fermi surface, this anti-localization effect is
suppressed, and the conductivity remains to have the usual logarithmic
weak-localization correction contributed by the 0-mode cooperon. As a result,
the dc conductivity in the unitary limit becomes a non-monotonic function of
the temperature or the sample size, which is quite different from the
prediction of the usual weak-localization theory.Comment: 21 pages, 4 figure
- …