688 research outputs found

    Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB

    Get PDF
    BACKGROUND: Apolipoprotein B (APOB) is an integral part of the LDL, VLDL, IDL, Lp(a) and chylomicron lipoprotein particles. The APOB pre-mRNA consists of 29 constitutively-spliced exons. APOB exists as two natural isoforms: the full-length APOB100 isoform, assembled into LDL, VLDL, IDL and Lp(a) and secreted by the liver in humans; and the C-terminally truncated APOB48, assembled into chylomicrons and secreted by the intestine in humans. Down-regulation of APOB100 is a potential therapy to lower circulating LDL and cholesterol levels. RESULTS: We investigated the ability of 2'O-methyl RNA antisense oligonucleotides (ASOs) to induce the skipping of exon 27 in endogenous APOB mRNA in HepG2 cells. These ASOs are directed towards the 5' and 3' splice-sites of exon 27, the branch-point sequence (BPS) of intron 26–27 and several predicted exonic splicing enhancers within exon 27. ASOs targeting either the 5' or 3' splice-site, in combination with the BPS, are the most effective. The splicing of other alternatively spliced genes are not influenced by these ASOs, suggesting that the effects seen are not due to non-specific changes in alternative splicing. The skip 27 mRNA is translated into a truncated isoform, APOB87(SKIP27). CONCLUSION: The induction of APOB87(SKIP27 )expression in vivo should lead to decreased LDL and cholesterol levels, by analogy to patients with hypobetalipoproteinemia. As intestinal APOB mRNA editing and APOB48 expression rely on sequences within exon 26, exon 27 skipping should not affect APOB48 expression unlike other methods of down-regulating APOB100 expression which also down-regulate APOB48

    Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors

    Get PDF
    We have examined the functional significance of the organization of pre-mRNA splicing factors in a speckled distribution in the mammalian cell nucleus. Upon microinjection into living cells of oligonucleotides or antibodies that inhibit pre-mRNA splicing in vitro, we observed major changes in the organization of splicing factors in vivo. Interchromatin granule clusters became uniform in shape, decreased in number, and increased in both size and content of splicing factors, as measured by immunofluorescence. These changes were transient and the organization of splicing factors returned to their normal distribution by 24 h following microinjection. Microinjection of these oligonucleotides or antibodies also resulted in a reduction of transcription in vivo, but the oligonucleotides did not inhibit transcription in vitro. Control oligonucleotides did not disrupt splicing or transcription in vivo. We propose that the reorganization of splicing factors we observed is the result of the inhibition of splicing in vivo

    Passively mode-locked 40-GHz Er:Yb:glass laser

    Get PDF
    A diode-pumped Er:Yb:glass miniature laser has been passively mode-locked to generate transform-limited 4.3-ps pulses with a 40-GHz repetition rate and 18-mW average powe

    Comparison of the Efficacy of MOE and PMO Modifications of Systemic Antisense Oligonucleotides in a Severe SMA Mouse Model

    Get PDF
    Spinal muscular atrophy (SMA) is a motor neuron disease. Nusinersen, a splice-switching antisense oligonucleotide (ASO), was the first approved drug to treat SMA. Based on prior preclinical studies, both 2'-O-methoxyethyl (MOE) with a phosphorothioate backbone and morpholino with a phosphorodiamidate backbone-with the same or extended target sequence as nusinersen-displayed efficient rescue of SMA mouse models. Here, we compared the therapeutic efficacy of these two modification chemistries in rescue of a severe mouse model using ASO10-29-a 2-nt longer version of nusinersen-via subcutaneous injection. Although both chemistries efficiently corrected SMN2 splicing in various tissues, restored motor function and improved the integrity of neuromuscular junctions, MOE-modified ASO10-29 (MOE10-29) was more efficacious than morpholino-modified ASO10-29 (PMO10-29) at the same molar dose, as seen by longer survival, greater body-weight gain and better preservation of motor neurons. Time-course analysis revealed that MOE10-29 had more persistent effects than PMO10-29. On the other hand, PMO10-29 appears to more readily cross an immature blood-brain barrier following systemic administration, showing more robust initial effects on SMN2 exon 7 inclusion, but less persistence in the central nervous system. We conclude that both modifications can be effective as splice-switching ASOs in the context of SMA and potentially other diseases, and discuss the advantages and disadvantages of each

    Crystallization and preliminary X-ray diffraction studies of UP1, the two-RRM domain of hnRNP A1

    Get PDF
    The N-terminal domain of hnRNP A1 protein, termed UP1, comprises two tandem RNA-recognition motifs, both of which are necessary for efficient RNA binding and for the alternative splicing activity of hnRNP A1. Recombinant human UP1 expressed in E. coli has been crystallized in space group P2(1) with unit-cell dimensions a = 37.94, b = 43.98, c = 55.64 Angstrom and beta = 93.9 degrees. The unit-cell volume is consistent with one UP1 molecule per asymmetric unit and a calculated 49% solvent content. The crystal diffraction limit is higher than 1.3 Angstrom, and a data set to 2.0 Angstrom has been collected. Diffraction data from one platinum and two mercury derivatives have also been collected

    Control of Pre-mRNA Splicing by the General Splicing Factors PUF60 and U2AF65

    Get PDF
    Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes splicing of an intron with a weak 3' splice-site. PUF60 has homology to U2AF(65), a general splicing factor that facilitates 3' splice-site recognition at the early stages of spliceosome assembly. We demonstrate that PUF60 can functionally substitute for U2AF(65)in vitro, but splicing is strongly stimulated by the presence of both proteins. Reduction of either PUF60 or U2AF(65) in cells alters the splicing pattern of endogenous transcripts, consistent with the idea that regulation of PUF60 and U2AF(65) levels can dictate alternative splicing patterns. Our results indicate that recognition of 3' splice sites involves different U2AF-like molecules, and that modulation of these general splicing factors can have profound effects on splicing

    Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA

    Get PDF
    Human hnRNP A1 is a versatile single-stranded nucleic acid-binding protein that functions in various aspects of mRNA maturation and in telomere length regulation. The crystal structure of UP1, the amino-terminal domain of human hnRNP A1 containing two RNA-recognition motifs (RRMs), bound to a 12-nucleotide single-stranded telomeric DNA has been determined at 2.1 Angstrom resolution. The structure of the complex reveals the basis for sequence-specific recognition of the single-stranded overhangs of human telomeres by hnRNP A1. It also provides insights into the basis for high-affinity binding of hnRNP A1 to certain RNA sequences, and for nucleic acid binding and functional synergy between the RRMs. In the crystal structure, a UP1 dimer binds to two strands of DNA, and each strand contacts RRM1 of one monomer and RRM2 of the other. The two DNA strands are antiparallel, and regions of the protein flanking each RRM make important contacts with DNA. The extensive protein-protein interface seen in the crystal structure of the protein-DNA complex and the evolutionary conservation of the interface residues suggest the importance of specific protein-protein interactions for the sequence-specific recognition of single-stranded nucleic acids. Models for regular packaging of telomere 3' overhangs and for juxtaposition of alternative 5' splice sites are proposed

    New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers

    Get PDF
    The reflectivity of a semiconductor saturable absorber mirror (SESAM) is generally expected to increase with increasing pulse energy. However, for higher pulse energies the reflectivity can decrease again; we call this a ‘roll-over' of the nonlinear reflectivity curve caused by inverse saturable absorption. We show for several SESAMs that the measured roll-over is consistent with two-photon absorption only for short (femtosecond) pulses, while a stronger (yet unidentified) kind of nonlinear absorption is dominant for longer (picosecond) pulses. These inverse saturable absorption effects have important technological consequences, e.g. for the Q-switching dynamics of passively mode-locked lasers. A simple equation using only measurable SESAM parameters and including inverse saturable absorption is derived for the Q-switched mode-locking threshold. We present various data and discuss the sometimes detrimental effects of this roll-over for femtosecond high repetition rate lasers, as well as the potentially very useful consequences for passively mode-locked multi-GHz lasers. We also discuss strategies to enhance or reduce this induced absorption by using different SESAM designs or semiconductor material

    Serine Phosphorylation of SR Proteins Is Required for Their Recruitment to Sites of Transcription In Vivo

    Get PDF
    Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3′ processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.F. Cáceres, and D.L. Spector. 1997. Nature. 387:523–527). This recruitment process appears to spatially coordinate transcription and pre-mRNA splicing within the cell nucleus. Here we have investigated the molecular basis for recruitment by analyzing the recruitment properties of mutant splicing factors. We show that multiple protein domains are required for efficient recruitment of SR proteins from nuclear speckles to nascent RNA. The two types of modular domains found in the splicing factor SF2/ ASF exert distinct functions in this process. In living cells, the RS domain functions in the dissociation of the protein from speckles, and phosphorylation of serine residues in the RS domain is a prerequisite for this event. The RNA binding domains play a role in the association of splicing factors with the target RNA. These observations identify a novel in vivo role for the RS domain of SR proteins and suggest a model in which protein phosphorylation is instrumental for the recruitment of these proteins to active sites of transcription in vivo

    An exonic splicing enhancer in human IGF-I pre-mRNA mediates recognition of alternative exon 5 by the serine-arginine protein splicing factor-2/alternative splicing factor

    Get PDF
    The human IGF-I gene has six exons, four of which are alternatively spliced. Variations in splicing involving exon 5 may occur, depending on the tissue type and hormonal environment. To study the regulation of splicing to IGF-I exon 5, we established an in vitro splicing assay, using a model pre-mRNA containing IGF-I exons 4 and 5 and part of the intervening intron. Using a series of deletion mutants, we identified an 18-nucleotide purine-rich splicing enhancer in exon 5 that increases the splicing efficiency of the upstream intron from 6 to 35%. We show that the serine-arginine protein splicing factor-2/alternative splicing factor specifically promotes splicing in cultured cells and in vitro and is recruited to the spliceosome in an enhancer-specific manner. Our findings are consistent with a role for splicing factor-2/alternative splicing factor in the regulation of splicing of IGF-I alternative exon 5 via a purine-rich exonic splicing enhancer
    corecore