12 research outputs found

    A second eigenvalue bound for the Dirichlet Schroedinger operator

    Full text link
    Let λi(Ω,V)\lambda_i(\Omega,V) be the iith eigenvalue of the Schr\"odinger operator with Dirichlet boundary conditions on a bounded domain Ω⊂Rn\Omega \subset \R^n and with the positive potential VV. Following the spirit of the Payne-P\'olya-Weinberger conjecture and under some convexity assumptions on the spherically rearranged potential V⋆V_\star, we prove that λ2(Ω,V)≤λ2(S1,V⋆)\lambda_2(\Omega,V) \le \lambda_2(S_1,V_\star). Here S1S_1 denotes the ball, centered at the origin, that satisfies the condition λ1(Ω,V)=λ1(S1,V⋆)\lambda_1(\Omega,V) = \lambda_1(S_1,V_\star). Further we prove under the same convexity assumptions on a spherically symmetric potential VV, that λ2(BR,V)/λ1(BR,V)\lambda_2(B_R, V) / \lambda_1(B_R, V) decreases when the radius RR of the ball BRB_R increases. We conclude with several results about the first two eigenvalues of the Laplace operator with respect to a measure of Gaussian or inverted Gaussian density

    Thermoanalytical studies of carbamazepine: hydration/dehydration, thermal decomposition, and solid phase transitions

    Get PDF
    Carbamazepine (CBZ), a widely used anticonvulsant drug, can crystallize and exhibits four polymorphic forms and one dihydrate. Anhydrous CBZ can spontaneously absorb water and convert to the hydrate form whose different crystallinity leads to lower biological activity. The present study was concerned to the possibility of recovering the hydrated form by heating. The thermal behavior of spontaneously hydrated carbamazepine was investigated by TG/DTG-DTA and DSC in dynamic atmospheres of air and nitrogen, which revealed that the spontaneous hydration of this pharmaceutical resulted in a Form III hydrate with 1.5 water molecules. After dehydration, this anhydrous Form III converted to Form I, which melted and decomposed in a single event, releasing isocyanic acid, as shown by evolved gas analysis using TG-FTIR. Differential scanning calorimetry analyses revealed that Form III melted and crystallized as Form I, and that subsequent cooling cycles only generated Form I by crystallization. Solid state decomposition kinetic studies showed that there was no change in the substance after the elimination of water by heating to 120 °C. Activation energies of 98 ± 2 and 93 ± 2 kJ mol-1 were found for the hydrated and dried samples, respectively, and similar profiles of activation energy as a function of conversion factor were observed for these samples
    corecore