83 research outputs found

    Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis

    Get PDF
    Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections. © 2009 Piuri et al

    Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1

    Get PDF
    Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER+ breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context

    Two Evolutionary Histories in the Genome of Rice: the Roles of Domestication Genes

    Get PDF
    Genealogical patterns in different genomic regions may be different due to the joint influence of gene flow and selection. The existence of two subspecies of cultivated rice provides a unique opportunity for analyzing these effects during domestication. We chose 66 accessions from the three rice taxa (about 22 each from Oryza sativa indica, O. sativa japonica, and O. rufipogon) for whole-genome sequencing. In the search for the signature of selection, we focus on low diversity regions (LDRs) shared by both cultivars. We found that the genealogical histories of these overlapping LDRs are distinct from the genomic background. While indica and japonica genomes generally appear to be of independent origin, many overlapping LDRs may have originated only once, as a result of selection and subsequent introgression. Interestingly, many such LDRs contain only one candidate gene of rice domestication, and several known domestication genes have indeed been “rediscovered” by this approach. In summary, we identified 13 additional candidate genes of domestication

    Patterns of Polymorphism and Demographic History in Natural Populations of Arabidopsis lyrata

    Get PDF
    Many of the processes affecting genetic diversity act on local populations. However, studies of plant nucleotide diversity have largely ignored local sampling, making it difficult to infer the demographic history of populations and to assess the importance of local adaptation. Arabidopsis lyrata, a self-incompatible, perennial species with a circumpolar distribution, is an excellent model system in which to study the roles of demographic history and local adaptation in patterning genetic variation.We studied nucleotide diversity in six natural populations of Arabidopsis lyrata, using 77 loci sampled from 140 chromosomes. The six populations were highly differentiated, with a median FST of 0.52, and structure analysis revealed no evidence of admixed individuals. Average within-population diversity varied among populations, with the highest diversity found in a German population; this population harbors 3-fold higher levels of silent diversity than worldwide samples of A. thaliana. All A. lyrata populations also yielded positive values of Tajima's D. We estimated a demographic model for these populations, finding evidence of population divergence over the past 19,000 to 47,000 years involving non-equilibrium demographic events that reduced the effective size of most populations. Finally, we used the inferred demographic model to perform an initial test for local adaptation and identified several genes, including the flowering time gene FCA and a disease resistance locus, as candidates for local adaptation events.Our results underscore the importance of population-specific, non-equilibrium demographic processes in patterning diversity within A. lyrata. Moreover, our extensive dataset provides an important resource for future molecular population genetic studies of local adaptation in A. lyrata

    A Genome Scan for Positive Selection in Thoroughbred Horses

    Get PDF
    Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1) deviations from expected heterozygosity (Ewens-Watterson test) in Thoroughbred (n = 112) and (2) global differentiation among four geographically diverse horse populations (FST). We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; P<0.01), insulin receptor signalling (5.0-fold enrichment; P<0.01) and lipid transport (2.2-fold enrichment; P<0.05) genes. We found a significant overrepresentation of sarcoglycan complex (11.1-fold enrichment; P<0.05) and focal adhesion pathway (1.9-fold enrichment; P<0.01) genes highlighting the role for muscle strength and integrity in the Thoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1), ACTA1 (actin, alpha 1, skeletal muscle), ACTN2 (actinin, alpha 2), ADHFE1 (alcohol dehydrogenase, iron containing, 1), MTFR1 (mitochondrial fission regulator 1), PDK4 (pyruvate dehydrogenase kinase, isozyme 4) and TNC (tenascin C). Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes within the complex molecular networks underlying obesity and its consequential pathologies, such as type 2 diabetes. Therefore, we propose Thoroughbred as a novel in vivo large animal model for understanding molecular protection against metabolic disease

    Integrins as therapeutic targets: lessons and opportunities.

    Get PDF
    The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets
    corecore