4 research outputs found

    An Investigation into the Poor Survival of an Endangered Coho Salmon Population

    Get PDF
    To investigate reasons for the decline of an endangered population of coho salmon (O. kisutch), 190 smolts were acoustically tagged during three consecutive years and their movements and survival were estimated using the Pacific Ocean Shelf Tracking project (POST) array. Median travel times of the Thompson River coho salmon smolts to the lower Fraser River sub-array were 16, 12 and 10 days during 2004, 2005 and 2006, respectively. Few smolts were recorded on marine arrays. Freshwater survival rates of the tagged smolts during their downstream migration were 0.0–5.6% (0.0–9.0% s.e.) in 2004, 7.0% (6.2% s.e.) in 2005, and 50.9% (18.6% s.e.) in 2006. Overall smolt-to-adult return rates exhibited a similar pattern, which suggests that low freshwater survival rates of out-migrating smolts may be a primary reason for the poor conservation status of this endangered coho salmon population

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Nitrogen fertilization has differential effects on N allocation and lignin in two Populus species with contrasting ecology

    Get PDF
    Black cottonwood (BC, Populus trichocarpa) and hybrid aspen (HA, P. tremula 9 tremuloides) differ in their ecology of being adapted to wet and drier conditions as riparian and early successional forest species, respectively. We tested the hypothesis that these ecological differences were reflected in higher nitrogen (N) use efficiency in HA than in BC and that HA would allocate more resources belowground than BC in the presence of high and low N availability. We expected that responses of wood properties to elevated N would be more pronounced in the species with higher wood formation in response to N supply. HA showed higher belowground biomass partitioning than BC in the presence of low (0.2 mM) and high (2 mM) N supply, but in contrast to our expectation wholeplant nitrogen use efficiency and the stem carbon-tonitrogen balance were lower than in BC. In response to elevated N, HA exhibited stronger stimulation of biomass production than BC, especially of the stem, which showed significant increases in biomass and volume but decreases in density. Lignification, especially the production of guaiacyl (G)-compared to syringyl (S)-lignin, was delayed in HA compared with BC wood. Since G lignin leads to stronger crosslinking than S lignin, its delayed formation may have enabled stronger expansion and higher volume increment of HA than of BC stems. Our results suggest that BC, a poplar species adapted to fluctuating N supply, is less responsive to differences in N availability than aspen that occurs in low N environments.peerReviewe
    corecore