35 research outputs found

    A randomized controlled multicenter trial of post-suicide attempt case management for the prevention of further attempts in Japan (ACTION-J)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A previous suicide attempt is a potent risk factor for suicide later on. Crisis intervention, psychiatric and psychosocial evaluation at emergency medical facilities, and follow-up care for suicide attempters are considered important components for suicide prevention. The Japanese Multimodal Intervention Trials for Suicide Prevention (J-MISP) includes a randomized, controlled, multicenter trial of post-suicide attempt case management for the prevention of further attempts (ACTION-J) to address the continuing increase in suicides in Japan. The primary aim of ACTION-J is to examine the effectiveness of an extensive intervention for suicide attempters in prevention of recurrent suicidal behavior, as compared with standard intervention. This paper describes the rationale and protocol of the ACTION-J trial.</p> <p>Methods/Design</p> <p>In this clinical trial, case management intervention will be provided at 19 emergency medical facilities in Japan. After crisis intervention including psychiatric evaluation, psychosocial assessment, and psychological education, subjects will be randomly assigned to either a group receiving continuous case management or a control group receiving standard care. Suicidal ideation, depressive symptoms, and general health condition will be evaluated as secondary measures. The intervention was initiated in July 2006. By December, 2009, 842 subjects will be randomized. Subject follow-up will continue for 1.5 to 5 years.</p> <p>Discussion</p> <p>Suicide is a complex phenomenon that encompasses multiple factors. Case management by multi-sector collaboration is needed. ACTION-J may provide valuable information on suicide attempters and may develop effective case management to reduce future risk for suicide attempters.</p> <p>Trial registration</p> <p>UMIN Clinical Trials Registry number, UMIN000000444. ClinicalTrials.gov number, NCT00736918.</p

    Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders

    Get PDF
    Increasing evidence suggests that epigenetic factors have critical roles in gene regulation in neuropsychiatric disorders and in aging, both of which are typically associated with a wide range of gene expression abnormalities. Here, we have used chromatin immunoprecipitation-qPCR to measure levels of acetylated histone H3 at lysines 9/14 (ac-H3K9K14), two epigenetic marks associated with transcriptionally active chromatin, at the promoter regions of eight schizophrenia-related genes in n=82 postmortem prefrontal cortical samples from normal subjects and those with schizophrenia and bipolar disorder. We find that promoter-associated ac-H3K9K14 levels are correlated with gene expression levels, as measured by real-time qPCR for several genes, including, glutamic acid decarboxylase 1 (GAD1), 5-hydroxytryptamine receptor 2C (HTR2C), translocase of outer mitochondrial membrane 70 homolog A (TOMM70A) and protein phosphatase 1E (PPM1E). Ac-H3K9K14 levels of several of the genes tested were significantly negatively associated with age in normal subjects and those with bipolar disorder, but not in subjects with schizophrenia, whereby low levels of histone acetylation were observed in early age and throughout aging. Consistent with this observation, significant hypoacetylation of H3K9K14 was detected in young subjects with schizophrenia when compared with age-matched controls. Our results demonstrate that gene expression changes associated with psychiatric disease and aging result from epigenetic mechanisms involving histone acetylation. We further find that treatment with a histone deacetylase (HDAC) inhibitor alters the expression of several candidate genes for schizophrenia in mouse brain. These findings may have therapeutic implications for the clinical use of HDAC inhibitors in psychiatric disorders

    The primary headaches: genetics, epigenetics and a behavioural genetic model

    Get PDF
    The primary headaches, migraine with (MA) and without aura (MO) and cluster headache, all carry a substantial genetic liability. Familial hemiplegic migraine (FHM), an autosomal dominant mendelian disorder classified as a subtype of MA, is due to mutations in genes encoding neural channel subunits. MA/MO are considered multifactorial genetic disorders, and FHM has been proposed as a model for migraine aetiology. However, a review of the genetic studies suggests that the FHM genes are not involved in the typical migraines and that FHM should be considered as a syndromic migraine rather than a subtype of MA. Adopting the concept of syndromic migraine could be useful in understanding migraine pathogenesis. We hypothesise that epigenetic mechanisms play an important role in headache pathogenesis. A behavioural model is proposed, whereby the primary headaches are construed as behaviours, not symptoms, evolutionarily conserved for their adaptive value and engendered out of a genetic repertoire by a network of pattern generators present in the brain and signalling homeostatic imbalance. This behavioural model could be incorporated into migraine genetic research

    Epigenetic regulation of caloric restriction in aging

    Get PDF
    The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases
    corecore