96 research outputs found

    Milk is for Children, Colostrum silage is for calves.

    Get PDF
    One sixth of the world population is starving. In the meantime, producers from all over the world daily disdain billions of liters of bovine colostrum, which is seen as rich in nutrients, immunoglobulin and bioactive substances. The milk is the most expensive component in the final costs of calves breeding. Considering the impossibility of substituting the milk to feed the calf, different ways to use the colostrum have been studied however with controversial results. We have developed colostrum silage. This product is economical and possible to store in the environment for up to eighteen months. Being efficient for calf breeding, yielding income and profit to the dairy business. The colostrum silage keeps the necessary physicochemical characteristics for the development of the calves. Calves fed with this product had a significant higher weight gain comparing to the ones fed with milk. Then the milk can be used for human consumption

    Prediction of social structure and genetic relatedness in colonies of the facultative polygynous stingless bee Melipona bicolor (Hymenoptera, Apidae)

    Get PDF
    Stingless bee colonies typically consist of one single-mated mother queen and her worker offspring. The stingless bee Melipona bicolor (Hymenoptera: Apidae) shows facultative polygyny, which makes this species particularly suitable for testing theoretical expectations concerning social behavior. In this study, we investigated the social structure and genetic relatedness among workers from eight natural and six manipulated colonies of M. bicolor over a period of one year. The populations of M. bicolor contained monogynous and polygynous colonies. The estimated genetic relatedness among workers from monogynous and polygynous colonies was 0.75 ± 0.12 and 0.53 ± 0.16 (mean ± SEM), respectively. Although the parental genotypes had significant effects on genetic relatedness in monogynous and polygynous colonies, polygyny markedly decreased the relatedness among nestmate workers. Our findings also demonstrate that polygyny in M. bicolor may arise from the adoption of related or unrelated queens

    The Synaptonemal Complex Protein Zip1 Promotes Bi-Orientation of Centromeres at Meiosis I

    Get PDF
    In meiosis I, homologous chromosomes become paired and then separate from one another to opposite poles of the spindle. In humans, errors in this process are a leading cause of birth defects, mental retardation, and infertility. In most organisms, crossing-over, or exchange, between the homologous partners provides a link that promotes their proper, bipolar, attachment to the spindle. Attachment of both partners to the same pole can sometimes be corrected during a delay that is triggered by the spindle checkpoint. Studies of non-exchange chromosomes have shown that centromere pairing serves as an alternative to exchange by orienting the centromeres for proper microtubule attachment. Here, we demonstrate a new role for the synaptonemal complex protein Zip1. Zip1 localizes to the centromeres of non-exchange chromosomes in pachytene and mediates centromere pairing and segregation of the partners at meiosis I. Exchange chromosomes were also found to experience Zip1-dependent pairing at their centromeres. Zip1 was found to persist at centromeres, after synaptonemal complex disassembly, remaining there until microtubule attachment. Disruption of this centromere pairing, in spindle checkpoint mutants, randomized the segregation of exchange chromosomes. These results demonstrate that Zip1-mediated pairing of exchange chromosome centromeres promotes an initial, bipolar attachment of microtubules. This activity of Zip1 lessens the load on the spindle checkpoint, greatly reducing the chance that the cell will exit the checkpoint delay with an improperly oriented chromosome pair. Thus exchange, the spindle checkpoint, and centromere pairing are complementary mechanisms that ensure the proper segregation of homologous partners at meiosis I

    Early Adolescent Depressive Symptoms: Prediction from Clique Isolation, Loneliness, and Perceived Social Acceptance

    Get PDF
    This study examined whether clique isolation predicted an increase in depressive symptoms and whether this association was mediated by loneliness and perceived social acceptance in 310 children followed from age 11–14 years. Clique isolation was identified through social network analysis, whereas depressive symptoms, loneliness, and perceived social acceptance were assessed using self ratings. While accounting for initial levels of depressive symptoms, peer rejection, and friendlessness at age 11 years, a high probability of being isolated from cliques from age 11 to 13 years predicted depressive symptoms at age 14 years. The link between clique isolation and depressive symptoms was mediated by loneliness, but not by perceived social acceptance. No sex differences were found in the associations between clique isolation and depressive symptoms. These results suggest that clique isolation is a social risk factor for the escalation of depressive symptoms in early adolescence. Implications for research and prevention are discussed
    • …
    corecore