91 research outputs found

    Bone Loss in Diabetes: Use of Antidiabetic Thiazolidinediones and Secondary Osteoporosis

    Get PDF
    Clinical evidence indicates that bone status is affected in patients with type 2 diabetes mellitus (T2DM). Regardless of normal or even high bone mineral density, T2DM patients have increased risk of fractures. One class of antidiabetic drugs, thiazolidinediones (TZDs), causes bone loss and further increases facture risk, placing TZDs in the category of drugs causing secondary osteoporosis. Risk factors for development of TZD-induced secondary osteoporosis are gender (women), age (elderly), and duration of treatment. TZDs exert their antidiabetic effects by activating peroxisome proliferator-activated receptor-γ (PPAR-γ) nuclear receptor, which controls glucose and fatty acid metabolism. In bone, PPAR-γ controls differentiation of cells of mesenchymal and hematopoietic lineages. PPAR-γ activation with TZDs leads to unbalanced bone remodeling: bone resorption increases and bone formation decreases. Laboratory research evidence points toward a possible separation of unwanted effects of PPAR-γ on bone from its beneficial antidiabetic effects by using selective PPAR-γ modulators. This review also discusses potential pharmacologic means to protect bone from detrimental effects of clinically used TZDs (pioglitazone and rosiglitazone) by using combinational therapy with approved antiosteoporotic drugs, or by using lower doses of TZDs in combination with other antidiabetic therapy. We also suggest a possible orthopedic complication, not yet supported by clinical studies, of delayed fracture healing in T2DM patients on TZD therapy

    The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats.</p> <p>Methods</p> <p>Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed.</p> <p>Results</p> <p>Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate.</p> <p>Conclusions</p> <p>The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.</p

    Toward a Comprehensive Approach to the Collection and Analysis of Pica Substances, with Emphasis on Geophagic Materials

    Get PDF
    Pica, the craving and subsequent consumption of non-food substances such as earth, charcoal, and raw starch, has been an enigma for more than 2000 years. Currently, there are little available data for testing major hypotheses about pica because of methodological limitations and lack of attention to the problem.In this paper we critically review procedures and guidelines for interviews and sample collection that are appropriate for a wide variety of pica substances. In addition, we outline methodologies for the physical, mineralogical, and chemical characterization of these substances, with particular focus on geophagic soils and clays. Many of these methods are standard procedures in anthropological, soil, or nutritional sciences, but have rarely or never been applied to the study of pica.Physical properties of geophagic materials including color, particle size distribution, consistency and dispersion/flocculation (coagulation) should be assessed by appropriate methods. Quantitative mineralogical analyses by X-ray diffraction should be made on bulk material as well as on separated clay fractions, and the various clay minerals should be characterized by a variety of supplementary tests. Concentrations of minerals should be determined using X-ray fluorescence for non-food substances and inductively coupled plasma-atomic emission spectroscopy for food-like substances. pH, salt content, cation exchange capacity, organic carbon content and labile forms of iron oxide should also be determined. Finally, analyses relating to biological interactions are recommended, including determination of the bioavailability of nutrients and other bioactive components from pica substances, as well as their detoxification capacities and parasitological profiles.This is the first review of appropriate methodologies for the study of human pica. The comprehensive and multi-disciplinary approach to the collection and analysis of pica substances detailed here is a necessary preliminary step to understanding the nutritional enigma of non-food consumption

    Obsolete ideas and logical confusions can be obstacles for biogerontology research.

    No full text
    International audienceSome misconceptions can be an obstacle for biogerontology research. These misconceptions can be classified in two categories: (1) obsolete ideas in biology, for example "aging has a universal cause" and "living beings are like machines", and (2) conceptual and logical confusions, such as "longevity is not dependent on other life-history traits", "between-groups variability allows to infer conclusions about individual variability", and "the burden of the proof lies with the opponents to the hypothesis". This opinion article describes these problems in the hope it will help to overcome them
    corecore