758 research outputs found
Recommended from our members
Cost of care for cancer patients in England: evidence from population-based patient-level data
background: Health systems are facing the challenge of providing care to an increasing population of patients with cancer. However, evidence on costs is limited due to the lack of large longitudinal databases.
methods: We matched cost of care data to population-based, patient-level data on cancer patients in England. We conducted a retrospective cohort study including all patients age 18 and over with a diagnosis of colorectal (275 985 patients), breast (359 771), prostate (286 426) and lung cancer (283 940) in England between 2001 and 2010. Incidence costs, prevalence costs, and phase of care costs were estimated separately for patients age 18–64 and greater than or equal to65. Costs of care were compared by patients staging, before and after diagnosis, and with a comparison population without cancer.
results: Incidence costs in the first year of diagnosis are noticeably higher in patients age 18–64 than age greater than or equal to65 across all examined cancers. A lower stage diagnosis is associated with larger cost savings for colorectal and breast cancer in both age groups. The additional costs of care because of the main four cancers amounts to £1.5 billion in 2010, namely 3.0% of the total cost of hospital care.
conclusions: Population-based, patient-level data can be used to provide new evidence on the cost of cancer in England. Early diagnosis and cancer prevention have scope for achieving large cost savings for the health system
Pollutant dispersion in a developing valley cold-air pool
Pollutants are trapped and accumulate within cold-air pools, thereby affecting air quality. A numerical model is used to quantify the role of cold-air-pooling processes in the dispersion of air pollution in a developing cold-air pool within an alpine valley under decoupled stable conditions. Results indicate that the negatively buoyant downslope flows transport and mix pollutants into the valley to depths that depend on the temperature deficit of the flow and the ambient temperature structure inside the valley. Along the slopes, pollutants are generally entrained above the cold-air pool and detrained within the cold-air pool, largely above the ground-based inversion layer. The ability of the cold-air pool to dilute pollutants is quantified. The analysis shows that the downslope flows fill the valley with air from above, which is then largely trapped within the cold-air pool, and that dilution depends on where the pollutants are emitted with respect to the positions of the top of the ground-based inversion layer and cold-air pool, and on the slope wind speeds. Over the lower part of the slopes, the cold-air-pool-averaged concentrations are proportional to the slope wind speeds where the pollutants are emitted, and diminish as the cold-air pool deepens. Pollutants emitted within the ground-based inversion layer are largely trapped there. Pollutants emitted farther up the slopes detrain within the cold-air pool above the ground-based inversion layer, although some fraction, increasing with distance from the top of the slopes, penetrates into the ground-based inversion layer.Peer reviewe
Search for Higgs bosons of the Universal Extra Dimensions at the Large Hadron Collider
The Higgs sector of the Universal Extra Dimensions (UED) has a rather
involved setup. With one extra space dimension, the main ingredients to the
construct are the higher Kaluza-Klein (KK) excitations of the Standard Model
Higgs boson and the fifth components of the gauge fields which on
compactification appear as scalar degrees of freedom and can mix with the
former thus leading to physical KK-Higgs states of the scenario. In this work,
we explore in detail the phenomenology of such a Higgs sector of the UED with
the Large Hadron Collider (LHC) in focus. We work out relevant decay branching
fractions involving the KK-Higgs excitations. Possible production modes of the
KK-Higgs bosons are then discussed with an emphasis on their associated
production with the third generation KK-quarks and that under the cascade
decays of strongly interacting UED excitations which turn out to be the only
phenomenologically significant modes. It is pointed out that the collider
searches of such Higgs bosons face generic hardship due to soft end-products
which result from severe degeneracies in the masses of the involved excitations
in the minimal version of the UED (MUED). Generic implications of either
observing some or all of the KK-Higgs bosons at the LHC are discussed.Comment: 25 pages, 9 figures and 1 tabl
Dusty Planetary Systems
Extensive photometric stellar surveys show that many main sequence stars show
emission at infrared and longer wavelengths that is in excess of the stellar
photosphere; this emission is thought to arise from circumstellar dust. The
presence of dust disks is confirmed by spatially resolved imaging at infrared
to millimeter wavelengths (tracing the dust thermal emission), and at optical
to near infrared wavelengths (tracing the dust scattered light). Because the
expected lifetime of these dust particles is much shorter than the age of the
stars (>10 Myr), it is inferred that this solid material not primordial, i.e.
the remaining from the placental cloud of gas and dust where the star was born,
but instead is replenished by dust-producing planetesimals. These planetesimals
are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our
Solar system that produce the interplanetary dust that gives rise to the
zodiacal light (tracing the inner component of the Solar system debris disk).
The presence of these "debris disks" around stars with a wide range of masses,
luminosities, and metallicities, with and without binary companions, is
evidence that planetesimal formation is a robust process that can take place
under a wide range of conditions. This chapter is divided in two parts. Part I
discusses how the study of the Solar system debris disk and the study of debris
disks around other stars can help us learn about the formation, evolution and
diversity of planetary systems by shedding light on the frequency and timing of
planetesimal formation, the location and physical properties of the
planetesimals, the presence of long-period planets, and the dynamical and
collisional evolution of the system. Part II reviews the physical processes
that affect dust particles in the gas-free environment of a debris disk and
their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary
Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets,
Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201
Interactions between the night time valley-wind system and a developing cold-air pool
This is a pre-copyedited, author-produced PDF of an article accepted for publication in Boundary-Layer Meteorology following peer review. The version of record [Arduini, G., Staquet, C & Chemel, C., ‘Interactions between the night time valley-wind system and a developing cold-air pool’, Boundary-Layer Meteorol (2016) 161:1 (49-72), first published online June 2, 2016, is available at Springer online at doi: 10.1007/s10546-016-0155-8The Weather Research and Forecast (WRF) numerical model is used to characterize the influence of a thermally-driven down-valley flow on a developing cold-air pool in an idealized alpine valley decoupled from the atmosphere above. Results for a three-dimensional (3D) valley, which allows for the formation of a down-valley flow, and for a two-dimensional (2D) valley, where the formation of a down-valley flow is inhibited, are analyzed and compared. A key result is that advection leads to a net cooling in the 2D valley and to a warming in the 3D valley, once the down-valley flow is fully developed. This difference stems from the suppression of the slope-flow induced upward motions over the valley centre in the 3D valley. As a result, the downslope flows develop a cross-valley circulation within the cold-air pool, the growth of the cold-air pool is reduced and the valley atmosphere is generally warmer than in the 2D valley. A quasi-steady state is reached for which the divergence of the down-valley flow along the valley is balanced by the convergence of the downslope flows at the top of the cold-air pool, with no net contribution of subsiding motions far from the slope layer. More precisely, the inflow of air at the top of the cold-air pool is found to be driven by an interplay between the return flow from the plain region and subsidence over the plateaux. Finally, the mechanisms that control the structure of the cold-air pool and its evolution are found to be independent of the valley length as soon as the quasi-steady state is reached and the down-valley flow is fully developed.Peer reviewedFinal Accepted Versio
IL-2 Regulates SEB Induced Toxic Shock Syndrome in BALB/c Mice
BACKGROUND:Toxic Shock Syndrome (TSS) is characterized by fever, rash, hypotension, constitutional symptoms, and multi-organ involvement and is caused by Staphylococcus aureus enterotoxins such as Staphylococcal Enterotoxin B (SEB). SEB binds to the MHC-IIalpha chain and is recognized by the TCRbeta chain of the Vbeta8 TCR(+) T cells. The binding of SEB to Vbeta chain results in rapid activation of T cells and production of inflammatory cytokines, such as Interleukin-2 (IL-2), Interferon-gamma and Tumor Necrosis Factor-alpha which mediate TSS. Although IL2 was originally identified as the T cell growth factor and was proposed to contribute to T cell differentiation, its role in TSS remains unexplored. METHODOLOGY/PRINCIPAL FINDINGS:Mice were injected with D-Gal (25 mg/mouse). One hour after D-Galactosamine (D-Gal) injection each mouse was injected with SEB (20 microg/mouse. Mice were then observed for 72 hrs and death was recorded at different times. We tested Interleukin-12, IFNgamma, and IL-2 deficient mice (IL-2(-/-)), but only the IL-2 deficient mice were resistant to SEB induced toxic shock syndrome. More importantly reconstitution of IL-2 in IL-2 deficient mice restored the shock. Interestingly, SEB induced IL-2 production from T cells was dependent on p38MAPK activation in macrophages as inhibition of it in macrophages significantly inhibited IL-2 production from T cells. CONCLUSION:This study shows the importance of IL -2 in TSS which has not been previously explored and it also shows that regulating macrophages function can regulate T cells and TSS
Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis
Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies
Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells
In view of the prevalence of sensorineural hearing defects in an ageing population, the development of protocols to generate cochlear hair cells and their associated sensory neurons as tools to further our understanding of inner ear development are highly desirable. We report herein a robust protocol for the generation of both vestibular and cochlear hair cells from human pluripotent stem cells which represents an advance over currently available methods that have been reported to generate vestibular hair cells only. Generating otic organoids from human pluripotent stem cells using a three-dimensional culture system, we show formation of both types of sensory hair cells bearing stereociliary bundles with active mechano-sensory ion channels. These cells share many morphological characteristics with their in vivo counterparts during embryonic development of the cochlear and vestibular organs and moreover demonstrate electrophysiological activity detected through single-cell patch clamping. Collectively these data represent an advance in our ability to generate cells of an otic lineage and will be useful for building models of the sensory regions of the cochlea and vestibule
Collaborative research between academia and industry using a large clinical trial database: a case study in Alzheimer's disease
<p>Abstract</p> <p>Background</p> <p>Large clinical trials databases, developed over the course of a comprehensive clinical trial programme, represent an invaluable resource for clinical researchers. Data mining projects sponsored by industry that use these databases, however, are often not viewed favourably in the academic medical community because of concerns that commercial, rather than scientific, goals are the primary purpose of such endeavours. Thus, there are few examples of sustained collaboration between leading academic clinical researchers and industry professionals in a large-scale data mining project. We present here a successful example of this type of collaboration in the field of dementia.</p> <p>Methods</p> <p>The Donepezil Data Repository comprised 18 randomised, controlled trials conducted between 1991 and 2005. The project team at Pfizer determined that the data mining process should be guided by a diverse group of leading Alzheimer's disease clinical researchers called the "Expert Working Group." After development of a list of potential faculty members, invitations were extended and a group of seven members was assembled. The Working Group met regularly with Eisai/Pfizer clinicians and statisticians to discuss the data, identify issues that were currently of interest in the academic and clinical communities that might lend themselves to investigation using these data, and note gaps in understanding or knowledge of Alzheimer's disease that these data could address. Leadership was provided by the Pfizer Clinical Development team leader; Working Group members rotated responsibility for being lead and co-lead for each investigation and resultant publication.</p> <p>Results</p> <p>Six manuscripts, each published in a leading subspecialty journal, resulted from the group's work. Another project resulted in poster presentations at international congresses and two were cancelled due to resource constraints.</p> <p>Conclusions</p> <p>The experience represents a particular approach to optimising the value of data mining of large clinical trial databases for the combined purpose of furthering clinical research and improving patient care. Fruitful collaboration between industry and academia was fostered while the donepezil data repository was used to advance clinical and scientific knowledge. The Expert Working Group approach warrants consideration as a blueprint for conducting similar research ventures in the future.</p
- …