33 research outputs found

    Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008

    Get PDF
    High-resolution in situ CO2 measurements were conducted aboard the NASA DC-8 aircraft during the ARCTAS/POLARCAT field campaign, a component of the wider 2007-2008 International Polar Year activities. Data were recorded during large-scale surveys spanning the North American sub-Arctic to the North Pole from 0.04 to 12 km altitude in spring and summer of 2008. Influences on the observed CO2 concentrations were investigated using coincident CO, black carbon, CH3CN, HCN, O3, C2Cl4, and Δ14CO2 data, and the FLEXPART model. In spring, the CO2 spatial distribution from 55̊N to 90̊N was largely determined by the long-range transport of air masses laden with Asian anthropogenic pollution intermingled with Eurasian fire emissions evidenced by the greater variability in the mid-to-upper troposphere. At the receptor site, the enhancement ratios of CO2 to CO in pollution plumes ranged from 27 to 80 ppmv ppmv-1 with the highest anthropogenic content registered in plumes sampled poleward of 80̊N. In summer, the CO2 signal largely reflected emissions from lightning-ignited wildfires within the boreal forests of northern Saskatchewan juxtaposed with uptake by the terrestrial biosphere. Measurements within fresh fire plumes yielded CO2 to CO emission ratios of 4 to 16 ppmv ppmv-1 and a mean CO2 emission factor of 1698 ± 280 g kg-1 dry matter. From the 14C in CO2 content of 48 whole air samples, mean spring (46.6 ± 4.4%) and summer (51.5 ± 5%) D14CO2 values indicate a 5%seasonal difference. Although the northern midlatitudes were identified as the emissions source regions for the majority of the spring samples, depleted Δ14CO2 values were observed in <1% of the data set. Rather, ARCTAS Δ14CO2 observations (54%) revealed predominately a pattern of positive disequilibrium (1-7%) with respect to background regardless of season owing to both heterotrophic respiration and fire-induced combustion of biomass. Anomalously enriched Δ14CO2 values (101-262%) measured in emissions from Lake Athabasca and Eurasian fires speak to biomass burning as an increasingly important contributor to the mass excess in Δ14CO2 observations in a warming Arctic, representing an additional source of uncertainty in the quantification of fossil fuel CO2

    Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA

    Get PDF
    High resolution in situ measurements of atmospheric CO2 were made from the NASA DC-8 aircraft during the Intercontinental Chemical Transport Experiment - North America (INTEX-NA) campaign, part of the wider International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). During the summer of 2004, eighteen flights comprising 160h of measurements were conducted within a region bounded by 27 to 53°N and 36 to 139°W over an altitude range of 0.15 to 12 km. These large-scale surveys provided the opportunity to examine the characteristics of the atmospheric CO2 signal over sparsely sampled areas of North America and adjacent ocean basins. The observations showed a high degree of variability (≤ 18%) due to the myriad source and sink processes influencing the air masses intercepted over the INTEX-NA sampling domain. Surface fluxes had strong effects on continental scale concentration gradients. Clear signatures of CO2 uptake were seen east of the Mississippi River, notably a persistent CO2 deficit in the lowest 2-3 km. When combining the airborne CO2 measurements with LANDSAT and MODIS data products, the lowest CO2 mixing ratios observed during the campaign (337 ppm) were tied to mid-continental agricultural fields planted in corn and soybeans. We used simultaneous measurements of CO, O3, C2Cl4, C2H6, C2H2 and other unique chemical tracers to differentiate air mass types. Coupling these distinct air mass chemical signatures with transport history permitted identification of convection, stratosphere-troposphere exchange, long-range transport from Eastern Asia, boreal wildfires, and continental outflow as competing processes at multiple scales influencing the observed concentrations. Our results suggest these are important factors contributing to the large-scale distribution in CO2 Mixing ratios thus these observations offer new constraints in the computation of the North American carbon budget. Copyright 2008 by the American Geophysical Union
    corecore