9 research outputs found

    Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery

    Get PDF
    BACKGROUND: Detailed neuropathological information on the structural brain lesions underlying seizures is valuable for understanding drug-resistant focal epilepsy. / METHODS: We report the diagnoses made on the basis of resected brain specimens from 9523 patients who underwent epilepsy surgery for drug-resistant seizures in 36 centers from 12 European countries over 25 years. Histopathological diagnoses were determined through examination of the specimens in local hospitals (41%) or at the German Neuropathology Reference Center for Epilepsy Surgery (59%). / RESULTS: The onset of seizures occurred before 18 years of age in 75.9% of patients overall, and 72.5% of the patients underwent surgery as adults. The mean duration of epilepsy before surgical resection was 20.1 years among adults and 5.3 years among children. The temporal lobe was involved in 71.9% of operations. There were 36 histopathological diagnoses in seven major disease categories. The most common categories were hippocampal sclerosis, found in 36.4% of the patients (88.7% of cases were in adults), tumors (mainly ganglioglioma) in 23.6%, and malformations of cortical development in 19.8% (focal cortical dysplasia was the most common type, 52.7% of cases of which were in children). No histopathological diagnosis could be established for 7.7% of the patients. / CONCLUSIONS: In patients with drug-resistant focal epilepsy requiring surgery, hippocampal sclerosis was the most common histopathological diagnosis among adults, and focal cortical dysplasia was the most common diagnosis among children. Tumors were the second most common lesion in both groups. (Funded by the European Union and others.

    Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epilepsy

    No full text
    International audienceEpilepsy is commonly associated with cognitive and behavioral deficits that dramatically affect the quality of life of patients. In order to identify novel therapeutic strategies aimed at reducing these deficits, it is critical first to understand the mechanisms leading to cognitive impairments in epilepsy. Traditionally, seizures and epileptiform activity in addition to neuronal injury have been considered to be the most significant contributors to cognitive dysfunction. In this review we however highlight the role of a new mechanism: alterations of neuronal dynamics, i.e. the timing at which neurons and networks receive and process neural information. These alterations, caused by the underlying etiologies of epilepsy syndromes, are observed in both animal models and patients in the form of abnormal oscillation patterns in unit firing, local field potentials, and electroencephalogram (EEG). Evidence suggests that such mechanisms significantly contribute to cognitive impairment in epilepsy, independently of seizures and interictal epileptiform activity. Therefore, therapeutic strategies directly targeting neuronal dynamics rather than seizure reduction may significantly benefit the quality of life of patients

    Purinergic signalling in endocrine organs

    No full text
    corecore