43 research outputs found

    Lions and Prions and Deer Demise

    Get PDF
    Background: Contagious prion diseases – scrapie of sheep and chronic wasting disease of several species in the deer family – give rise to epidemics that seem capable of compromising host population viability. Despite this prospect, the ecological consequences of prion disease epidemics in natural populations have received little consideration. Methodology/Principal Findings: Using a cohort study design, we found that prion infection dramatically lowered survival of free-ranging adult (.2-year-old) mule deer (Odocoileus hemionus): estimated average life expectancy was 5.2 additional years for uninfected deer but only 1.6 additional years for infected deer. Prion infection also increased nearly fourfold the rate of mountain lions (Puma concolor) preying on deer, suggesting that epidemics may alter predator–prey dynamics by facilitating hunting success. Despite selective predation, about one fourth of the adult deer we sampled were infected. High prevalence and low survival of infected deer provided a plausible explanation for the marked decline in this deer population since the 1980s. Conclusion: Remarkably high infection rates sustained in the face of intense predation show that even seemingly complete ecosystems may offer little resistance to the spread and persistence of contagious prion diseases. Moreover, the depression of infected populations may lead to local imbalances in food webs and nutrient cycling in ecosystems in which deer ar

    The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages

    Get PDF
    We quantified the role of a main food resource, sedimenting organic matter (SOM), relative to oxygen (DO) and temperature (TEMP) in structuring profundal macroinvertebrate assemblages in boreal lakes. SOM from 26 basins of 11 Finnish lakes was analysed for quantity (sedimentation rates), quality (C:N:P stoichiometry) and origin (carbon stable isotopes, d13C). Hypolimnetic oxygen and temperature were measured from each site during summer stratification. Partial canonical correspondence analysis (CCA) and partial regression analyses were used to quantify contributions of SOM, DO and TEMP to community composition and three macroinvertebrate metrics. The results suggested a major contribution of SOM in regulating the community composition and total biomass. Oxygen best explained the Shannon diversity, whereas TEMP had largest contribution to the variation of Benthic Quality Index. Community composition was most strongly related to d13C of SOM. Based on additional d13C and stoichiometric analyses of chironomid taxa, marked differences were apparent in their utilization of SOM and body stoichiometry; taxa characteristic of oligotrophic conditions exhibited higher C:N ratios and lower C:P and N:P ratios compared to the species typical of eutrophic lakes. The results highlight the role of SOM in regulating benthic communities and the distributions of individual species, particularly in oligotrophic systems

    Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation

    Full text link

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process

    Get PDF
    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus

    A shape-anisotropic reflective polarizer in a stomatopod crustacean

    Get PDF
    Many biophotonic structures have their spectral properties of reflection ‘tuned’ using the (zeroth-order) Bragg criteria for phase constructive interference. This is associated with a periodicity, or distribution of periodicities, parallel to the direction of illumination. The polarization properties of these reflections are, however, typically constrained by the dimensional symmetry and intrinsic dielectric properties of the biological materials. Here we report a linearly polarizing reflector in a stomatopod crustacean that consists of 6-8 layers of hollow, ovoid vesicles with principal axes of ~550nm, ~250nm and ~150nm. The reflection of unpolarized normally incident light is blue/green in colour with maximum reflectance wavelength of 520 nm and a degree of polarization greater than 0.6 over most of the visible spectrum. We demonstrate that the polarizing reflection can be explained by a resonant coupling with the first-order, in-plane, Bragg harmonics. These harmonics are associated with a distribution of periodicities perpendicular to the direction of illumination, and, due to the shape-anisotropy of the vesicles, are different for each linear polarization mode. This control and tuning of the polarization of the reflection using shape-anisotropic hollow scatterers is unlike any optical structure previously described and could provide a new design pathway for polarization-tunability in man-made photonic devices
    corecore