23 research outputs found

    Collagen of Chronically Inflamed Skin Is Over-Modified and Upregulates Secretion of Matrix Metalloproteinase 2 and Matrix-Degrading Enzymes by Endothelial Cells and Fibroblasts

    Get PDF
    In order to investigate the properties of collagen in chronically inflamed tissue, we isolated collagen from the ear skin of mice with chronic contact dermatitis and examined its biochemical characteristics and the functions that regulate the secretion of matrix metalloproteinase 2 and collagen-degrading enzymes from endothelial cells and fibroblasts. Collagen in skin with chronic contact dermatitis comprised 60% type I collagen and 40% type III collagen, which latter is higher than the content of type III collagen in control skin (35%). The denaturation temperature was higher (42°C) than that of control skin (39°C). The α2 chain of type I collagen was over-hydroxylated at both proline and lysine residues. Segment-long-spacing crystallites of type I collagen were unusually connected in tandem. Collagen of chronically inflamed skin was less susceptible to matrix metalloproteinase 2 after heat denaturation. Endothelial cells and fibroblasts secreted an increased amount of matrix metalloproteinase 2 when cultured on a gel formed from the collagen of chronically inflamed skin. Collagen-degrading activity secreted from fibroblasts was also upregulated when cells were in contact with collagen of chronically inflamed skin. These results suggest that the collagen in chronically inflamed tissue has altered biochemical characteristics and functions, which may affect the pathogenesis of the chronic skin disease

    Adrenomedullin in sinusoidal endothelial cells play protective roles against cold injury of liver

    Get PDF
    Donor organ damage caused by cold preservation is a major problem affecting liver transplantation. Cold preservation most easily damages liver sinusoidal endothelial cells (LSECs), and information about the molecules modulating LSECs function can provide the basis for new therapeutic strategies. Adrenomedullin (AM) is a peptide known to possess anti-apoptotic and anti-inflammatory properties. AM is abundant in vascular endothelial cells, but levels are comparatively low in liver, and little is known about its function there. In this study, we demonstrated both AM and its receptors are expressed in LSECs. AM treatment reduced LSECs loss and apoptosis under cold treatment. AM also downregulated cold-induced expression of TNF alpha, IL1 beta, IL6, ICAM1 and VCAM1. AM reduced apoptosis and expression of ICAM1 and VCAM1 in an in vivo liver model subjected to cold storage. Conversely, apoptosis was exacerbated in livers from AM and RAMP2 (AM receptor activity-modifying protein) knockout mice. These results suggest that AM expressed in LSECs exerts a protective effect against cold-organ damage through modulation of apoptosis and inflammation.ArticlePEPTIDES. 31(5):865-871 (2010)journal articl

    Detection of endogenous and food-derived collagen dipeptide prolylhydroxyproline (Pro-Hyp) in allergic contact dermatitis-affected mouse ear.

    Get PDF
    Generation of collagen dipeptides and deposition of orally administered prolylhydroxyproline (Pro-Hyp) in local inflammatory sites were examined in mice with hapten (2, 4-dinitrofluorobenzene)-induced dermatitis in the ear. Pro-Hyp content in the hapten-treated ear was significantly higher in the chronic phase of contact dermatitis than the vehicle control. In contrast, hydroxyprolylglycine contents remained at lower levels in all cases compared to Pro-Hyp. Four hours after the ingestion of [(13)C5, (15)N]Pro and [(13)C5, (15)N]Pro-Hyp, labeled-Pro-Hyp and Pro, respectively, appeared only in the ear with dermatitis. Thus, Pro-Hyp is generated and degraded as part of the rapid synthesis and degradation of collagen in the ear with dermatitis. In addition to the endogenously generated Pro-Hyp, the orally administered Pro-Hyp was deposited in the ears

    A Rapid and Simple LC-MS Method Using Collagen Marker Peptides for Identification of the Animal Source of Leather

    No full text
    Identification of the animal source of leather is difficult using traditional methods, including microscopic observation and PCR. In the present study, a LC-MS method was developed for detecting interspecies differences in the amino acid sequence of type I collagen, which is a major component of leather, among six animals (cattle, horse, pig, sheep, goat, and deer). After a dechroming procedure and trypsin digestion, six tryptic peptides of type I collagen were monitored by LC-MS in multiple reaction monitoring mode for the animal source identification using the patterns of the presence or absence of the marker peptides. We analyzed commercial leathers from various production areas using this method, and found some leathers in which the commercial label disagreed with the identified animal source. Our method enabled rapid and simple leather certification and could be applied to other animals whether or not their collagen sequences are available in public databases

    Oral ingestion of collagen peptide causes change in width of the perimysium of the chicken iliotibialis lateralis muscle

    Get PDF
    Skeletal muscle is mainly composed of myofibers and intramuscular connective tissue. Bundles composed of many myofibers, with each myofiber sheathed in connective tissue called the endomysium, are packed in the perimysium, which occupies the vast bulk of the intramuscular connective tissue. The perimysium is a major determination factor for muscle texture. Some studies have reported that collagen peptide (Col-Pep) ingestion improves the connective tissue architecture, such as the tendon and dermis. The present study evaluated the effects of Col-Pep ingestion on the chicken iliotibialis lateralis (ITL) muscle. Chicks were allocated to three groups: the 0.15% or 0.3% Col-Pep groups and a control group. Col-Pep was administered by mixing in with commercial food. On day 49, the ITL muscles were analyzed by morphological observation and the textural property test. The width of the perimysium in the 0.3% Col-Pep group was significantly larger than other two groups. Although scanning electron microscopic observations did not reveal any differences in the architecture of the endomysium, elastic improvement of the ITL muscle was observed as suggested by an increase of the width of perimysium and improved rheological properties. Our results indicate that ingestion of Col-Pep improves the textural property of ITL muscle of chickens by changing structure of the perimysium

    Ring-Mesh Model of Proteoglycan Glycosaminoglycan Chains in Tendon based on Three-dimensional Reconstruction by Focused Ion Beam Scanning Electron Microscopy

    Get PDF
    Tendons are composed of collagen fibrils and proteoglycan predominantly consisting of decorin. Decorin is located on the d-band of collagen fibrils, and its glycosaminoglycan (GAG) chains have been observed between collagen fibrils with transmission electron microscopy. GAG chains have been proposed to interact with each other or with collagen fibrils, but its three-dimensional organization remains unclear. In this report, we used focused ion beam scanning electron microscopy to examine the three-dimensional organization of the GAG chain in the Achilles tendon of mature rats embedded in epoxy resin after staining with Cupromeronic blue, which specifically stains GAG chains. We used 250 serial back-scattered electron images of longitudinal sections with a 10-nm interval for reconstruction. Three-dimensional images revealed that GAG chains form a ring mesh-like structure with each ring surrounding a collagen fibril at the d-band and fusing with adjacent rings to form the planar network. This ring mesh model of GAG chains suggests that more than two GAG chains may interact with each other around collagen fibrils, which could provide new insights into the roles of GAG chains
    corecore