1,012 research outputs found

    Beyond consistency test of gravity with redshift-space distortions at quasi-linear scales

    Get PDF
    Redshift-space distortions (RSD) offer an attractive method to measure the growth of cosmic structure on large scales, and combining with the measurement of the cosmic expansion history, it can be used as cosmological tests of gravity. With the advent of future galaxy redshift surveys aiming at precisely measuring the RSD, an accurate modeling of RSD going beyond linear theory is a critical issue in order to detect or disprove small deviations from general relativity (GR). While several improved models of RSD have been recently proposed based on the perturbation theory (PT), the framework of these models heavily relies on GR. Here, we put forward a new PT prescription for RSD in general modified gravity models. As a specific application, we present theoretical predictions of the redshift-space power spectra in f(R) gravity model, and compare them with N-body simulations. Using the PT template that takes into account the effects of both modifications of gravity and RSD properly, we successfully recover the fiducial model parameter in N-body simulations in an unbiased way. On the other hand, we found it difficult to detect the scale dependence of the growth rate in a model-independent way based on GR templates.Comment: 17 pages, 9 figures, version accepted for publication in PR

    STRUCTURE OF THE OCCIPITAL REGION IN PIERIDAE (LEPIDOPTERA) FROM JAPAN

    Get PDF
    The structure of the occipital region in the Pierid butterflies mainly from Japan was observed. As the result, Leptidea was separable from the other species by the form of occipital prominence. The others were divided into 2 groups and 4 subgroups. Catopsilia resembled very closely Pierinae while Aporia and Anthocharis are very similar to Coliadenae in the occipital structure.ArticleJournal of the Faculty of Textile Science and Technology, Shinshu University. Ser. A, Biology 23: 1-22(1981)departmental bulletin pape

    MORPHOLOGICAL STUDIES ON THE OCCIPITAL REGION OF NYMPHALIDAE AND LIBYTHEIDAE (LEPIDOPTERA) FROM JAPAN

    Get PDF
    The occipital morphology of 54 species belonging to Nymphalidae and Libytheidae was studied with reference to its bearing on phylogenical grouping. 1. The occipital region consists of three main parts, viz. dorsal part of occiput, postocular plate and occipital foramen. Further the dorsal part of occiput is divisible into occipital prominence, intermediate plate and connection part, and postocular plate into marginal furrow, scale region and basal part of occiput. 2. Libytheidae is distinguished from Nymphalidae by main three characters. 3. The occipital morphology in Charaxinae is greatly different from that of the other subfamilies in Nymphalidae. It seems suitable to separate Charaxinae from Nymphalidae. 4. The occipital morphology in Dichorragia nesimachus nesiotes differs from that of Apaturinae markedly. 5. In the genus Limenitis, L. populi is very different from L. glorifica and L. camilla in the occipital morphology, and so it is inacceptable to treat them as one genus. 6. Vanessa indica and Cynthia cardui are so similar to each other in the occipital morphology that it is unable to treat them as the different genus.ArticleJournal of the Faculty of Textile Science and Technology, Shinshu University. Ser. A, Biology 20: 1-47(1978).departmental bulletin pape

    Regularized cosmological power spectrum and correlation function in modified gravity models

    Get PDF
    Based on the multi-point propagator expansion, we present resummed perturbative calculations for cosmological power spectra and correlation functions in the context of modified gravity. In a wide class of modified gravity models that have a screening mechanism to recover general relativity (GR) on small scales, we apply the eikonal approximation to derive the governing equation for resummed propagator that partly includes the non-perturbative effect in the high-k limit. The resultant propagator in the high-k limit contains the new corrections arising from the screening mechanism as well as the standard exponential damping. We explicitly derive the expression for new high-k contributions in specific modified gravity models, and find that in the case of f(R) gravity for a currently constrained model parameter, the corrections are basically of the sub-leading order and can be neglected. Thus, in f(R) gravity, similarly to the GR case, we can analytically construct the regularized propagator that reproduces both the resummed high-k behavior and the low-k results computed with standard perturbation theory, consistently taking account of the nonlinear modification of gravity valid at large scales. With the regularized multi-point propagators, we give predictions for power spectrum and correlation function at one-loop order, and compare those with N-body simulations in f(R) gravity model. As an important application, we also discuss the redshift-space distortions and compute the anisotropic power spectra and correlation functions.Comment: 25 pages, 7 figure

    Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity

    Get PDF
    We present a formalism to calculate the non-linear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover General Relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi non-linear power spectrum in the Dvali-Gabadadze-Porratti (DGP) braneworld models and f(R)f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully non-linear scales using the Parametrized Post Friedmann (PPF) framework. In f(R)f(R) gravity models, the predicted non-linear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at weakly non-linear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.Comment: 25 pages, 8 figures, comparison to N-body simulations in DGP added, published in PR

    Numerical study of curvature perturbations in a brane-world inflation at high-energies

    Get PDF
    We study the evolution of scalar curvature perturbations in a brane-world inflation model in a 5D Anti-de Sitter spacetime. The inflaton perturbations are confined to a 4D brane but they are coupled to the 5D bulk metric perturbations. We numerically solve full coupled equations for the inflaton perturbations and the 5D metric perturbations using Hawkins-Lidsey inflationary model. At an initial time, we assume that the bulk is unperturbed. We find that the inflaton perturbations at high energies are strongly coupled to the bulk metric perturbations even on subhorizon scales, leading to the suppression of the amplitude of the comoving curvature perturbations at a horizon crossing. This indicates that the linear perturbations of the inflaton field does not obey the usual 4D Klein-Gordon equation due to the coupling to 5D gravitational field on small scales and it is required to quantise the coupled brane-bulk system in a consistent way in order to calculate the spectrum of the scalar perturbations in a brane-world inflation.Comment: 16 pages, 5 figure

    Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects

    Get PDF
    Nutrition, via the insulin/insulin-like growth factor (IIS)/Target of Rapamycin (TOR) signaling pathway, can provide a strong molding force for determining animal size and shape. For instance, nutrition induces a disproportionate increase in the size of male horns in dung and rhinoceros beetles, or mandibles in staghorn or horned flour beetles, relative to body size. In these species, well-fed male larvae produce adults with greatly enlarged horns or mandibles, whereas males that are starved or poorly fed as larvae bear much more modest appendages. Changes in IIS/TOR signaling plays a key role in appendage development by regulating growth in the horn and mandible primordia. In contrast, changes in the IIS/TOR pathway produce minimal effects on the size of other adult structures, such as the male genitalia in fruit flies and dung beetles. The horn, mandible and genitalia illustrate that although all tissues are exposed to the same hormonal environment within the larval body, the extent to which insulin can induce growth is organ specific. In addition, the IIS/TOR pathway affects body size and shape by controlling production of metamorphic hormones important for regulating developmental timing, like the steroid molting hormone ecdysone and sesquiterpenoid hormone juvenile hormone. In this review, we discuss recent results from Drosophila and other insects that highlight mechanisms allowing tissues to differ in their sensitivity to IIS/TOR and the potential consequences of these differences on body size and shape.FCT fellowships, Fundação Calouste Gulbenkian

    Equivalence principle violation in Vainshtein screened two-body systems

    Get PDF
    In massive gravity, galileon, and braneworld explanations of cosmic acceleration, force modifications are screened by nonlinear derivative self-interactions of the scalar field mediating that force. Interactions between the field of a central body (“A”) and an orbiting body (“B”) imply that body B does not move as a test body in the field of body A if the orbit is smaller than the Vainshtein radius of body B. We find through numerical solutions of the joint field at the position of B that the A-field Laplacian is nearly perfectly screened by the B self-field, whereas first derivative or net forces are reduced in a manner that scales with the mass ratio of the bodies as (M_B/M_A)^(3/5). The latter causes mass-dependent reductions in the universal perihelion precession rate due to the fifth force, with deviations for the Earth-Moon system at the ∼4% level. In spite of universal coupling, which preserves the microscopic equivalence principle, the motion of macroscopic screened bodies depends on their mass providing in principle a means for testing the Vainshtein mechanism
    corecore