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Redshift-space distortions (RSD) offer an attractive method to measure the growth of cosmic
structure on large scales, and combining with the measurement of the cosmic expansion history,
it can be used as cosmological tests of gravity. With the advent of future galaxy redshift surveys
aiming at precisely measuring the RSD, an accurate modeling of RSD going beyond linear theory
is a critical issue in order to detect or disprove small deviations from general relativity (GR).
While several improved models of RSD have been recently proposed based on the perturbation
theory (PT), the framework of these models heavily relies on GR. Here, we put forward a new
PT prescription for RSD in general modified gravity models. As a specific application, we present
theoretical predictions of the redshift-space power spectra in f(R) gravity model, and compare
them with N-body simulations. Using the PT template that takes into account the effects of both
modifications of gravity and RSD properly, we successfully recover the fiducial model parameter in
N-body simulations in an unbiased way. On the other hand, we found it difficult to detect the scale

dependence of the growth rate in a model-independent way based on GR templates.

PACS numbers: 98.80.-k, 98.62.Py, 98.65.-r

I. INTRODUCTION

Redshift-space distortions (RSD) of galaxy clustering,
which appear as systematic effects in determining the
redshift of each galaxy via spectroscopic measurements
and manifestly break statistical isotropy @, ], are now
recognized as a sensitive probe of the growth of struc-
ture. Combining the distance measurement of galaxies
using the baryon acoustic oscillations as standard ruler
(e.g., Bﬂ]), RSD offers a unique opportunity to test the
theory of gravity on cosmological scales (e.g., [1-114]) and
help us obtain a deeper understanding of the current ac-
celerating expansion of the Universe. This is indeed one
of the main goal of on-going and up-coming galaxy sur-
veys such as the Baryon Oscillation Spectroscopic Survey
of Sloan Digital Sky Survey III', the WiggleZ survey?,
the Subaru Measurement of Imaging and Redshifts?, the
Dark Energy Survey?*, the BigBOSS project®, and the
ESA/Euclid survey®, which will provide precision mea-
surements of the power spectrum (or correlation func-
tion). The late-time cosmic acceleration, first discov-
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ered by the observations of distant type la supernovae
, |, may be the result of a dark energy which can
be realized in the presence of dynamical scalar field, or
it may indicate the breakdown of general relativity (GR)
on cosmological scales. The latter case requires a con-
sistent model of gravity that explains the accelerating
expansion on large scales with the modification of grav-
ity, while neatly evading the stringent constraints on the
deviation from GR at solar system scales (e.g., [17-20]).
In this respect, the large-scale structure offers the best
opportunity to distinguish between modified gravity and
dark energy models in GR, and the measurement of RSD
is a powerful tool to probe gravity.

Given the high-precision measurements of RSD in
the near future, accurate theoretical templates of the
redshift-space power spectrum or correlation function is
highly demanded in order to detect a small deviation
of gravity from GR. This is indeed now active research
subject, and there are many studies to accurately model
RSD. The RSD measurement is basically made at the
scales close to the linear regime of gravitational evolu-
tion, but the nonlinearity arising both from the gravity
and the RSD is known to play a crucial role. Moreover,
due to the non-Gaussian nature of RSD [21)], the appli-
cable range of linear theory prediction is fairly narrower
than that in real space. Thus, beyond the linear scales,
a sophisticated treatment is required for reliable theo-
retical predictions with a wider applicable range. Re-
cently, based on the perturbation theory of large-scale
structure, several improved models of RSD have been
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proposed M] These models properly account for the
non-Gaussian nature of RSD, and are tested against N-
body simulations, successfully describing redshift-space
power spectrum and/or correlation function at weakly
nonlinear regime. Applying these models to real obser-
vations, constraints on the growth of structure have been

also obtained (e.g., [31, 32)).

However, it should be noted that the proposed mod-
els of RSD have been so far tested only in the case of
GR. Further, beyond linear theory, the template of RSD
is computed with the perturbation theory under the as-
sumption that gravity is described by GR. Thus, the ob-
servational constraints derived from the PT-based tem-
plate can be only used as a consistency test with GR,
and a care must be taken in addressing the constraint on
a specific model of modified gravity.

The aim of the present paper is to examine these is-
sues based on an improved model of RSD developed by
Ref. m] The power spectrum expression of this model
is similar to the one proposed by Ref. ] and the so-
called streaming model frequently used in the literature
(e.g., [2, 21, 33-35]), but it includes two important PT
corrections as a result of the low-k expansion. Although
the model also includes a phenomenological term to ac-
count for the Finger-of-God damping arising from the
small-scale physics, combining the recently developed re-
summed PT, it successfully describes not only the matter
but also the halo power spectra in N-body simulations
ﬂﬁ, 36, @] It is shown that the model can be used as a
theoretical template to simultaneously constrain the pa-
rameters associated with the cosmic expansion and the
structure growth in an unbiased manner, and applying
it to the Luminous Red Galaxy sample of Sloan Digital
ﬂ%r Survey Data Release 7, a robust contraint is obtained

].

Here, extending these previous works in GR, we put
forward a prescription to compute the redshift-space
power spectrum in modified gravity models. As a specific
example, we explicitly compute the redshift-space power
spectrum in f(R) gravity model, as one of the represen-
tative modified theory of gravity ﬂE, ] The theoretical
prediction based on the standard PT calculation is com-
pared with the results of N-body simulations, and a good
agreement is found. Then, we will discuss the potential
impact of the precision modeling of RSD on the model-
independent test of GR and/or constraint on modified
gravity models. We will show that a tight and unbiased
constraint on modified gravity models is achieved only
with an improved PT model of RSD in which the effect
of modified gravity is properly taken into account in the
PT calculation. With the improved PT template, test-
ing GR will be made possible in a model-independent
way, but we argue that a quantitative characterization of
the small deviation from GR generally requires a prior
knowledge of modified gravity models.

The paper is organized as follows. In Sec. [[I, we be-
gin by briefly reviewing the model of RSD proposed by
Ref. m] Employing the standard PT calculation, we

then give a prescription on how to compute the redshift-
space power spectrum in modified gravity models. In Ap-
pendix [Al we summarize the basic formalism of the stan-
dard PT in a general context of modified gravity models,
and explicitly give expressions for the second-order PT
kernels used to compute the higher-order corrections of
RSD. In Sec. [Tl as one of the representative models of
modified gravity, we consider the f(R) gravity model,
and quantitatively compare the PT predictions in red-
shift space with N-body simulations. Based on this, in
Sec. [Vl a potential impact of the precision PT model
of RSD is discussed, particularly focusing on a precision
constraint on the model parameter of modified gravity,
and model-independent analysis of detecting or charac-
terizing a small deviation from GR. Finally, Sec. [Vl is
devoted to the summary and conclusion.

II. MODELING REDSHIFT-SPACE POWER
SPECTRUM FROM PERTURBATION THEORY

A. An improved model of RSD

We begin by writing the exact expression for redshift-
space power spectrum. Let us denote the density and
velocity fields by § and v. Owing to the distant-observer
approximation, which is usually valid for the observation
of distant galaxies of our interest, one can write (e.g.,

21, 22, [34))
P(S) (k?) _ /dg.’ll eik-m<eik,u Au,

X {6(T) - VZUZ(T)} {6(7“1) - VZUZ(T/)D? (1)

where £ = r — 7’ denotes the separation in real space
and (---) indicates an ensemble average. In the above
expression, the z-axis is taken as an observer’s line-of-
sight direction, and we define the directional cosine pu
by p = k,/k. Further, we defined u,(r) = v,(r)/(aH),
and Au, = u,(r) —u,(r") for the line-of-sight component
of the velocity field. Note that the above expression has
been derived without invoking the dynamical information
for velocity and density fields, i.e., the Euler equation
and/or continuity equations. Thus, Eq. () does hold
even in modified gravity models.

Eq. ) can be re-expressed in terms of the cumu-
lants. Then, the term in the bracket is factorized into two
terms, each of which includes the exponential factor (e.g.,
see Eq.(6) of Ref. [22] for explicit expression). Among
these, the overall factor, expressed as exp{(e?"#au=) }
with (- - - ). being the cumulant, is responsible for the sup-
pression of the power spectrum arising mostly from the
virialized random and coherent motion on small scales.
The effect of this is known to be partly non-perturbative,
and seems difficult to treat petrubatively. Since it has
been shown to mainly change the broadband shape of
the power spectrum, we may phenomenologically char-
acterize it with a general functional form Dgog(kuoy)



with oy being a scale-independent constant. On the other
hand, the remaining factor includes the term leading to
the Kaiser effect in the linear regime @, ], and is
likely to affect the structure of power spectrum on large-
scales. Although there also appears the exponential fac-
tor e?*# A= in each term of this factor, these contribu-
tions should be small as long as we consider the large
scales, and the perturbative treatment may be applied.

With the proposition given above, Ref. @] applied the
low-k expansion, keeping the overall prefactor as general
functional form Dgog. The resultant power spectrum
expression at one-loop order becomes

P(S) (ku /1’) = DFOG [kljf Uv]
% { Pucaiser (I, 1) + Ak, 1) + Bk, )}, (2)

which we hereafter call TNS model. Owing to the single-
stream approximation in which the dynamics of large-
scale structure is described by the density ¢ and velocity
divergence § = V-v/(aH), the quantities Pxaiser, A, and
B are explicitly written as

Piaiser(ky 1) = Pss(k) — 2 pi? Psg(k) + p* Pag(k),  (3)

Bp p.
A(k,u)=—ku/—p b

(2m)* p?
X {Bo’(p7 k — p, _k) - Bd(pu ku —k— p)} ) (4)
2 d’p
Bk = ()* [ G F@)P( = p) )

F@zg{%@—gmmﬁ,

where Pss, Py, and Pjsg respectively denote auto-power
spectra of density and velocity divergence, and their cross
power spectrum. The function B, is cross bispectrum
defined by

2 2
(o0k) {500) — S0t} {1k - Sroia })
= (27)%0p (k1 + k2 + k3) By (K1, ko, k3).  (6)

Note that in deriving Eq. (@), we do not assume any
gravity model. Although the expression (2 has been
originally derived based on the consideration in GR, as
long as the deviation from GR is small, Eq. (2] can apply
to any model of modified gravity.

As we mentioned in Sec. [, the main characteristic of
the model given in Eq. (@) is the two additional terms
A and B, which represent the higher-order coupling be-
tween velocity and density fields. It has been shown in
previous studies in GR that these two terms enhance
the power spectrum amplitude over the scales of baryon
acoustic oscillations, and moderately but notably change
the acoustic structure imprinted in the power spectrum
[22). As a result, the model (@) successfully describes
both the matter and halo power spectra of N-body sim-
ulations at weakly nonlinear scales ﬂﬂ, 23, @] These

features are expected to hold qualitatively even in the
modified theory of gravity, but quantitative aspect of the
RSD would generally differ from that of GR, which we
will study in detail.

B. Perturbation theory treatment

To compute the redshift-space power spectrum beyond
linear theory, we apply the PT treatment of gravitational
evolution, and calculate each term in Eq. (2]) in the quasi-
linear regime. While the power spectrum calculation in
the case of GR has been made possible with resummed
PT scheme up to the two-loop order (e.g., [36] in redshift
space, and @] in real space) and the applicable range
of the PT prediction has become wider, we here work
with the standard PT calculation at one-loop order for
the predictions in modified theory of gravity. Although
the standard PT treatment in GR is known to produce
ill-behaved PT expansion that lacks good convergence
properties (e.g., [42, [47/49)), using the standard PT as
theoretical template, we can still get a fruitful cosmolog-
ical constraint at the quasilinear scales (e.g., [50, [51]).
In the present paper, we use the standard PT formalism
developed by Ref. @], which is suited to deal with a
wide class of modified gravity models. In what follows,
we separately give a prescription on how to compute the
power spectrum corrections in Eq. ([2]).

1. Non-linear Kaiser term

The term Prkaiser in Eq. @) is the leading-order con-
tribution to the redshift-space power spectrum. In the
large-scale limit where the linear theory prediction is
safely applied, we have § = —f4§, and Eq. @) is re-
duced to the Kaiser formula, Pxaiser = (1 + f 112)? Pss(k)
[40), where f is the linear growth rate defined by
dln Dy /dlna with Dy being the linear growth factor.
Beyond the linear theory, a simple relation between den-
sity and velocity divergence fields no longer hold, and we
need to separately evaluate the three power spectra, Pss,
ﬂ%‘g and Pyg, especially in the modified gravity models

].

In contrast to the GR, one crucial point in the mod-
ified gravity models is that a new scalar degree of free-
dom, sometimes referred to as the scalaron, arises and
modifies the force law. In the presence of an extra scalar
field, even though the conservation law of energy momen-
tum tensor remains unchanged, the Poisson equation is
inevitably modified and is coupled to the field equation
for scalaron. In particular, in successful modified gravity
models that have a mechanism to recover GR on small
scales, the scalaron generally acquires nonlinear interac-
tion terms, and they play an important role to recover
GR on small scales. Thus, we need to properly take into
account such a nonlinear interaction of the scalaron, and



consistently solve the evolution equations of density and
velocity divergence.

In Ref. @], we have developed a formalism to calculate
the nonlinear power spectrum in a wide class of mod-
ified gravity models, including f(R) gravity and Dvali-
Gabadadze-Porratti (DGP) braneworld [53] models. The
formalism perturbatively treats the effect of nonlinear
scalaron, and employing the standard PT technique, we
have explicitly computed the power spectrum of density
field, Pss, at one-loop order, which reproduces the N-
body results at quasi-linear scales. In what follows, we
adopt this formalism to perturbatively compute auto-
and cross-power spectra of density and velocity diver-
gence. The basic equations for perturbations are briefly
summarized in Appendix [A]

To compute the one-loop power spectra, specifically
in the f(R) gravity model presented below (Sec. [, the
analytic calculations starting naively with the basic equa-
tions in Appendix [Al is technically difficult in practice,
because the perturbation equations cannot be separately
treated in time and scales. Instead of solving the equa-
tions for 0 and 6 in Appendix[Al we will numerically solve
the evolution equations for the power spectra Py, called
the closure equation in Ref. [5] [Eqs. (4.3)(4.4)(4.5)],
which has been derived by truncating an infinite chain
of the moment equations at one-loop order. Implemen-
tation and technical detail of the numerical scheme to
solve the closure equations are presented in Ref. m (see
also Appendix A of Ref. @

2. A term

Next consider the A term. The expression given in
Eq. @) can be rewritten with a more convenient form
suited for numerical integration. Introducing the dou-
blet”, ®, = (4, 0), we define the bispectrum B,p.:

(o (k1) Py (k)P (k3))

= (271')3 5D(k1 —|—k2+k¢3) Babc(kl,kg,kg). (7)
In terms of this, the three-dimensional integral is reduced
to the sum of the two-dimensional integrals, and the final
form of the A term becomes [36]

& & a+b 1 kS
X /oo dr dx {AL,(r,2) Baap(p, k — p, —k)
0 —1
+Avgb(7'a (E) B2ab(k _pupv_k)} (8)

7 This is somewhat different from the frequently-used definition
in GR, ®, = (§,—0/f) with f being the linear growth rate,
f=dinDy/dIna (e.g., [42,153)

with » = p/k and = k - p/(kp). The non-vanishing
components of A7, and A“ are exactly the same as those
presented in Ref. C@ (see “Sec. IT1-B2).

Since the A term appears as a next-to-leading order
correction, the tree-level calculation of the bispectrum
is sufficient for a consistent calculation of redshift-space
power spectrum at one-loop order. Expanding the dou-
blet &, as &, = @,(11) + <I>¢(12) + .-+, and assuming the
Gaussian initial condition, the bispectrum at the tree-
level order becomes

Bape(k1, k2, k3;t)
- 2{F§2>(k2, keg; t) FY (s t) O (ks t)

x Po(k2) Po(ks) + (cyc.perm.) |, (9)
where the functions Fén) are the symmetrized standard
PT kernel of the n-th order perturbative solutions®:

. &Py - P,
) (ks t) —/W

X F(M (K, ki) So(ka) -+ So(kn)  (10)

with kq..., = k1 + -+ + k,,. The function Jy is the ini-
tial density field, for which we assume Gaussian statis-
tics. The statistical property of dg is characterized by the
power spectrum:

(60(k)do (k")) = (2m)3 6p (k1 + K') Py(k) (11)

The remaining task in computing the A term is to
evaluate the PT kernels up to the second order, which
can be done analytically. This is also the case with the
f(R) gravity model given below, although some numer-
ical works are involved. In Appendix [A]l based on the
basic equations, we derive the explicit functional form of

Sp(k — ki)

the PT kernels Fél) and F(§2), and summarize the proce-
dure to compute these kernels. The explicit expression
for the PT kernels in f(R) gravity and DGP models is
also presented.

3. B term

Similar to the A term, the B term given in Eq. [@) is
reduced to the sum of two-dimensional integrals. From
Refs. @, @ |, the resultant expression becomes

kuzz 2 271- /dr/ dx

n=1a,b=1
Pao(kv1 412 — 2rx) Pyo(kr)
(I +72—2rz)e ’
(12)

x Bl (r, x)

8 Since we are interested in the late-time evolution of cosmic struc-
ture, we only consider the fastest growing term.



Here, the coefficients ng are the same as presented in
Appendlx B of Ref. @ For the one-loop order of the
redshift-space power spectrum, the linear-order power
spectra are sufficient to evaluate Eq. (I2)), and we have

Pap(k;t) = FD (k; ) FV (s ) Po () (13)

with the linear PT kernel Fél).

III. REDSHIFT-SPACE DISTORTIONS IN f(R)
GRAVITY MODEL

In this section, as an illustrative example showing the
RSD beyond linear scales in modified gravity model, we
compute the redshift-space power spectrum in the f(R)
gravity model, and compare the PT prediction with re-
sults of N-body simulations.

A. f(R) gravity

The f(R) gravity is one of the representative gravity
models, and it has a mechanism to recover GR on small
scales. Generalizing the Einstein-Hilbert action to in-
clude an arbitrary function of the scalar curvature R,
the model is given by:

S = /d4x\/_[ f()+L} (14)

where k2 = 87 G and L,, is the Lagrangian of the ordi-
nary matter. This theory is equivalent to the Brans-Dicke
theory with parameter wgp = 0, but there is a non-trivial
potential. This can be seen from the trace of modified
Einstein equations:

30fr — R+ frRR—2f = —k%p, (15)

where fr = df /dR and O is a Laplacian operator and we
assumed the matter dominated universe. We can iden-
tify fr as the scalaron, i.e., extra scalar field, and its
perturbations are defined as

¢=0fr=fr— Fr (16)

where the bar indicates that the quantity is evaluated
on the background universe. Here, we consider the cases
with |fr| < 1 and |f/R| < 1. These conditions are nec-
essary to have the background close to cold dark matter
(ACDM) cosmology. Then the perturbations for scalaron
satisty

= —k2pmd+OR,

0R = R(fr) — R(fr). (17)

9 In the case of GR, Eq. ([2) exactly coincides with Eq. (A4) of
Ref. }, but the definition of power spectra P,; is somewhat
different.

Note that this is nothing but the equation for the BD
scalar perturbations with wpp = 0.

In what follows, we consider the specific function f(R)
of the form

R

f(R)CXm,

(18)
where A is a constant with dimensions of length squared
[19). If we take the limit R — 0, we obtain f(R) — 0 and
cosmological constant does not appear. For high curva-
ture AR > 1, on the other hand, f(R) can be expanded
as
> R3
J(R) = ~26pa + | o] 52 (19)

where pp is determined by A. The quantity Ry is
the background curvature today, and we defined fro =
fr(Ro) (see e.g., [56160] for recent cosmological con-
straints on | frol)-

In the setup of N-body simulations and PT calculation
below, we will take |fro| < 1, and assume that the back-
ground expansion just follows the ACDM history with
the same pj.

B. N-body simulations

We use the subset of cosmological N-body simula-
tions presented in Ref. [61, [62]. The data set of N-
body simulations were created by the N-body code for
modified gravity models, ECOSMOG [63], which is a mod-
ification of the mesh-based N-body code, RAMSES ﬂ@]
With cubic boxes of side length 1.5h~! Gpc and 1024
particles, the initial conditions were generated at redshift
Zinit = 49 using MPgrafic!?, according to the linear mat-
ter power spectrum determined by the cosmological pa-
rameters: Q,, = 0.24, Q, = 0.76, Q, = 0.0481, h = 0.73,
ns = 0.961, og = 0.801 L.

In the analysis presented below, we mainly consider
GR and f(R) gravity with |fro| = 10=* (labeled as
ACDM and F4 in Ref. [62]), and focus on the output
results at z = 1. In Ref. [62], with 6 independent re-
alizations, the matter power spectra are measured in
redshift space, applying the distant-observer approxima-
tion. Adopting the line-of-sight direction perpendicular
to each side of the simulation box, the density field is
assigned on 10243 grids with cloud-in-cell interpolation,
and the power spectra are measured for three different
line-of-sight directions. Here, in comparison with the
PT model, we use the power spectra averaged over all
line-of-sight directions and realizations. With this treat-
ment, the measured power spectra tend to be smooth and
the outliers disappear, while the estimation of the error

10 http://www2.iap.fr/users/pichon/mpgrafic.html
11 The value of o indicated in Ref. [62] is a typo.
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FIG. 1: Power spectrum corrections from A term (left) and
B term (right). The plotted results are at z = 1, and they are
multiplied by k372 just for illustrative purpose. The A and B
terms are respectively expanded as A(k, p) = 30 Ao (k)p®"
and B(k,p) = 3% Bon(k)p®", and we here plot the scale-
dependent coefficients Ag, and Ba,. The dotted lines are the
results in GR, while the solid lines are those in f(R) gravity
model with |fr,| = 107*. Those results are computed with
the same linear power spectrum (see text). For reference, the
power spectra Pss, Psp, and Pyp are also shown in black, blue
and red lines for GR case.

covariance is rather complex because of the duplicated
power spectrum measurement with same realizations. In
what follows, for the analysis of the fitting and parame-
ter estimation, we assume a hypothetical galaxy survey of
the volume V = 10 k3 Gpc?, and consider the statistical
error limited by the cosmic variance. Unless otherwise
stated, the error bars of the N-body results indicate the
1-0 error of this hypothetical survey computed with the
linear power spectrum (see Appendix C of Ref. [22])'?

Finally, in addition to the redshift-space power spec-
tra, we also compare the real-space power spectra of the
density and velocity fields in Ref. @], which are used to
estimate the valid range of PT predictions.

C. Comparison with N-body simulations

Before presenting the redshift-space power spectrum,
we first separately compute the contribution of each term
in the power spectrum expression (2)), and compare it

12 Bq. (C4) of Ref. [29] includes typos. In the parenthesis of the
third line, it should be correctly replaced with 5+ (110/21)8 +

(15/7)82.
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FIG. 2: Auto and cross power spectra of density and velocity
fields in real space at z = 1 for GR (left) and f(R) gravity with
|frRol = 10~%. Top panels shows the power spectra multiplied
by the cube of wavenumber, i.e., 163/213@(1«)7 while bottom
panels present the ratio of the power spectra to the linear
theory predictions, Puy(k)/Papin (k).

with N-body simulation. Fig.[Ilshows the results of stan-
dard PT calculation at one-loop order at z = 1 in the GR
(dotted) and F4 (f(R) gravity with |fgo| = 1074, solid)
cases, with the same cosmological parameters as adopted
in N-body simulations. The A (left) and B (right) terms
are plotted together with the auto- and cross-power spec-
tra of density and velocity divergence fields, multiplied
by k3/2. According to Egs. ) and (I2)), the A and
B terms are expanded as A(k, ) = 3 Ag,, (k)p?" and

B(k,p) = Y2} By, (k)u®", and we here plot the scale-
dependent coefficients As,, and Ba, (A2, B2: magenta,
Ay, By: cyan, Ag, Bg: green, Bs: yellow). Overall, the
resultant amplitude of power spectrum corrections in F4
is rather larger than that in GR. The acoustic signature
are clearly seen in both GR and F4 cases not only for the
real-space quantities but also the RSD correction (i.e., A
term). The reason for a larger amplitude in f(R) gravity
is mainly attributed to the scale-dependent enhancement
of the linear growth factor on small scales in f(R) gravity,
and with a large value of | fg o| = 10~%, the mechanism to
recover GR is still inefficient at quasi-linear scales. This
implies that the redshift-space power spectrum can be
quite different between GR and F4, and the RSD cor-
rections (i.e., A and B terms) would play an important
role.

To see the domain of applicability of the standard PT
calculation, we next plot in Fig. [2] the real-space power
spectra Pss, Psp, and Pyg from N-body simulations, and
compare those with the PT results. According to a phe-



nomenological rule calibrated with N-body simulations
@, @], the standard PT power spectrum at one-loop
order is expected to agree with N-body simulations at
k < 0.12(0.15) hMpc~—! with an accuracy of 1% (3%)
level. Although the simulation results show somewhat
noisy behavior, the PT predictions seem to work well at
least at the scales indicated by the empirical rule, where
the deviation from linear theory is around 10% in both
GR and F4. The result suggests that even in the pres-
ence of a substantial difference in the linear growth, the
nonlinear gravitational growth itself does not change so
much between GR and modified gravity models. This
would be probably true as long as the mechanism to re-
cover GR is still inefficient at quasi-linear scales.

Keeping in mind the applicability of PT calculation,
we now focus on the redshift-space power spectrum, and
compare the PT calculations with N-body simulations.
In Fig. Bl top panels show the monopole (¢ = 0) and
quadrupole (¢ = 2) moments of power spectrum multi-
plied by k3/2, while bottom panels present the ratio of
monopole and quadrupole spectra to the linear theory
prediction taking only account of the Kaiser effect. The

multipole power spectrum PZ(S) is defined by

PZ(S)(k) — 2+1 /1 du PO (k, 1) Po(p), (20)

2 ~1

with Py being the Legendre polynomials. The PT results
based on an improved model of RSD [i.e., TNS model,
Eq. [@)] are depicted as solid lines, while the results with-
out correction terms are also shown in dashed lines. In
both cases, we adopt the Gaussian damping function in
computing PT predictions:

DFOG(k,Uf Uv) = exXp [_(kﬂ Uv)2] : (21)

Here, the velocity dispersion oy is a free parameter and
is determined by fitting the model predictions to the V-
body results of monopole and quadrupole spectra up to
kmax = 0.15 h Mpc~! (indicated by vertical arrows), cor-
responding to the valid range of PT. Note that we also ex-
amined the Lorentzian form, but the choice of the damp-
ing function did not change the results as long as we
consider the applicable range of standard PT one-loop.

Fig. B shows that the model () successfully describes
the N-body results of RSD in both GR and f(R) model.
Although the applicable range of standard PT one-loop
is limited, the A and B terms still play an important role.
In the presence of these terms, the acoustic signature of
redshift-space power spectrum tends to be smeared com-
pared to the real-space power spectrum, and this indeed
improves the agreement with N-body simulations. In the
panels of Fig.[B] we show the reduced chi-squared statistic

defined by'3

2
S S
{Pf(,l\?-body(ki) - Pé(,P)T(ki)}
S
AP (k)2

Ca= 33

0=0,2 i

with the quantity v being the number of degrees of free-
dom. Here, the statistical error APZ(S) is estimated from
the cosmic variance error assuming the survey volume
10 =3 Gpc3. The number of Fourier bins in the above
summation can be inferred from the maximum wavenum-
ber shown in Fig. Bl depicted as vertical arrows. The
resultant y2 ; taking account of the A and B terms (i.e.,
TNS model) are clearly lower than those ignoring the
corrections.

To show the quantitative difference of RSD be-
tween GR and f(R) gravity, Fig. [l shows the ratio of
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FIG. 3: Monopole (blue) and quadrupole (red) moments of
redshift-space power spectra at z = 1 for GR (left) and f(R)
with |fro| = 10™* (right). Top panels show the monopole
and quadrupole power spectra multiplied by k3/2 while bot-
tom panels present the ratio of power spectra to linear theory
predictions, Pe(s)(k:)/Pe(i)n(k) Solid and dashed lines respec-
tively show the PT results based on the TNS model [Eq. [@2))]
with and without A and B terms. In each panel, vertical ar-
row indicates the maximum wavenumber used to estimate o .

13 Strictly speaking, the non-vanishing monopole and quadrupole
moments of redshift-space power spectra yield a non-zero covari-
ance between them. This is true even in the Gaussian statistics.
However, the magnitude of covariance is shown to be fairly small
at large scales , @}, and the impact of covariance is ignorable
in our analysis.
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FIG. 4: Ratio of quadrupole-to-monopole ratio of f(R) grav-
ity to that of GR, (PZ(S)/PO(S))f(R)/(PZ(S)/PO(S))GR. The results
at z = 1 is shown. Solid and dashed lines are the PT pre-
dictions based on the TNS model with and without A and
B terms, while dotted lines are the linear theory predictions.
The vertical arrow indicates the maximum wavenumber used
to estimate oy.

quadrupole-to-monopole ratio in F4 to that in GR, i.e.,
(P2(S)/P0(S))f(R)/(Pés)/PO(S))GR. Note that the errorbars
of the N-body simulation shown in the panel are not
the cosmic variance error, but are estimated from the
N-body data of the 6 realizations for a particular line-
of-sight direction. The linear theory predicts a slight
enhancement of the ratio, while the actual N-body re-
sult rather shows a noticeable reduction at small scales.
This basically comes from a stronger suppression of the
power spectra in f(R) gravity, as shown in Fig. B] (see
bottom panel). Fig. [l summarizes the fitting results of
the parameter o, together with the resultant reduced chi-
squared. At z = 1, the fitted value of the velocity disper-
sion is relatively large in F4 by ~ 20%. Neglecting the
correction terms, the relative difference of o, between
f(R) model and GR is more prominent (~ 50%), al-
though the values themselves are even smaller than those
taking account of the A and B terms. As a result, the
PT prediction ignoring the corrections exhibits a strong
damping behavior in Fig. @ and tends to deviate from
N-body simulations at small scales. By contrast, the pre-
diction with A and B terms (i.e., TNS model) faithfully
traces the N-body trend beyond the applicable range of
the standard PT.

Finally, while we mainly presented the results at z = 1,
we briefly comment on other cases at z = 0, where we also
examined the F5 case (f(R) gravity with |fro| = 1075).
All the results are summarized in Fig. At z = 0,
the nonlinear clustering is strongly developed, and the
applicable range of standard PT one-loop is quite lim-
ited. Nevertheless, with a limited fitting range of k£ <
Emax = 0.1 Mpc™!, the PT results show an excellent
performance with xfed ~ 1, and the prediction including
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FIG. 5: Fitting results in GR (left) and f(R) gravity with
|fro| = 107* (middle) and 107" (right). The best-fit pa-
rameter oy, and the resultant values of reduced chi-squared
are respectively shown in top and bottom panels. For com-
parison, linear theory prediction of the velocity dispersion,
02 in = [ dqPso1in(q)/(677), is also depicted as solid lines in
top panels. In each panel, filled and open triangles indicate
the PT results based on the TNS model with and without A
and B terms, respectively. Note that the maximum wavenum-
ber in the fitting, kmax, is set to 0.10 and ().15hMpc71 at
z=0 and 1.

the A and B terms gives a better agreement with N-body
simulations. Fig. Blshows that the fitted value of velocity
dispersion in f(R) gravity is generally larger than that
in GR, roughly consistent with the one estimated with
linear theory (solid lines). This suggests that a stronger
damping of the power spectrum amplitude may be a good
indicator for modified gravity, as pointed out by Ref. ﬂ@]
(see also Ref. [67, 68]). Note, however, that the actual
value of o, depends on the underlying model of RSD.
Further, our observable is not dark matter but galaxy dis-
tribution, which does not faithfully trace the dark matter
distribution. A careful study is needed, and we leave this
issue to future work.

IV. IMPLICATIONS

Having confirmed that the PT model of RSD works
well at quasi-linear scales, in this section, we discuss the
potential impact of the PT template on the RSD mea-
surement at quasilinear scales.

In testing gravity with RSD, a primary goal would be
to clarify whether GR really holds on cosmological scales
or not. In this respect, the measurement of the linear
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FIG. 6: Top: Best-fit values of |fr,0| as function of the
maximum wavenumber kmax used for MCMC analysis. As-
suming the cosmic variance limited survey of the volume
V = 10h~3Gpc®, we fit the PT template to the N-body
simulation of the F4 run at z = 1, and derive the best-fit val-
ues and 1-o statistical error of |fr,o0|, allowing the parameter
oy to be free. Filled circles are the results based on the TNS
model [Eq. @)] in f(R) gravity, while filled triangles are the
cases ignoring the A and B terms. Open circles represent the
results similar to filled circles, but the corrections A and B
are calculated in GR. For comparison, crosses are the results
ignoring not only the A and B terms but also the damping
function Dgoc.

growth rate, f = dIln D, /dIna, provides an important
clue, and with the GR-based PT template, we may look
for a possible deviation of f from GR prediction. One
important property in a large class of modified gravity
models, including f(R) gravity, is the scale dependence
of f. Thus, a detection of scale-dependent f immediately
implies the deviation of gravity from GR. The crucial
question is how well one can detect or characterize such
scale dependence in a model-independent manner.

Alternatively, we may consider some specific gravity
models, and try to directly constrain the models them-
selves. In this case, the linear growth rate f might not be
an appropriate indicator to characterize a possible devia-
tion from GR. Rather, one tries to directly constrain the
model parameter of modified gravity (e.g., |fr,o| in the
case of f(R) gravity). Then, with the prior assumption
of the specific gravity models, the question is how well
we can accurately constrain the model parameter based
on the PT template of RSD in an un-biased way.

Below, we will separately consider these two issues,
and examine the parameter estimation analysis. Note

that we will adopt below x? of Eq. 2) to estimate
the goodness-of-fit. Strictly speaking, this is not en-
tirely correct, because the nonlinear gravitational evolu-
tion induces the non-Gaussian contribution, which pro-
duces non-vanishing power spectrum covariances between
diffrent Fourier modes. However, it is shown in the GR
case that as long as we consider the quasi-linear scales
at moderately high redshift, the off-diagonal componets
are small enough, and the diagonal components can be
approximately described by the simple Gaussian contri-
bution, leading to a negligible influence on the parame-
ter etstimation (e.g., ﬂé, %]) We thus expect that the
same would be true in our case of the f(R) gravity model
that is close to GR, and our simple treatment with Gaus-
sian error contribution would be validated at quasi-linear
scales.

A. Constraining model parameters of modified
gravity

Let us first consider the model-dependent analysis to
constrain the model parameter of modified gravity, as-
suming the f(R) gravity with |fr o] = 107% as our fidu-
cial gravity model. For specific functional form with
Eq. (M) [or Eq. (I8)], the parameter |fr | is the only
parameter characterizing a deviation of gravity from GR.
Thus, the test of gravity is made possible with constrain-
ing the model parameter |fr | by fitting the theoretical
template to the data set of redshift-space power spec-
trum. Here, as a simple demonstration, we ignore the
effect of galaxy bias, and allowing |fr 0| to flow, we fit
the PT template to the N-body data at z = 1.

Fig. [0l shows the results of parameter estimation based
on the Markov chain Monte Carlo (MCMC) technique.
Assuming the hypothetical survey limited by the cosmic
variance error with the survey volume V = 10 h=3 Gpc?,
the best-fit value of |fr | and the 1-o statistical error
are derived, and are plotted (top) as function of maxi-
mum wavenumber, ky.x, together with the reduced chi-
squared statistic x2,, (bottom), where kmyax represents
the range of the wavenumber used for parameter estima-
tion. Note here that the number of free parameters is
two, i.e., |fro| and oy. Accordingly, the derived con-
straint is rather tight, and a slight discrepancy between
the template and data can lead to a biased estimation of
the | fr,o|- Fig. @ shows that only the improved model of
RSD computed in f(R) gravity (filled circles) recovers the
fiducial |fr 0| out to kmax = 0.15hMpc~!, correspond-
ing to the applicable range of standard PT one-loop. A
slight change of the PT template, depicted as open cir-
cles and filled triangles, leads to a biased estimation of the
model parameter. Ignoring the damping function Dg.q
(crosses) further adds a large systematic error. This is
even true at kpa, < 0.1 hMpce™t.

Left panel of Fig. [l shows the representative result of
the two-dimensional constraints on |fgro| and o, taken
from Fig. [6l where we fix the maximum wavenumber to
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FIG. 7: Two-dimensional error contours derived from MCMC analysis, fixing the maximum wavenumber to Kkmax =

0.15 h Mpc™!.

Left panel shows the results derived from the PT template calculated in f(R) gravity. The three different

contours represent the cases with the PT template based on the TNS model [Eq. [@)] with and without A and B terms
(magenta, green), and with A and B calculated in GR (blue), which are also shown in Fig. On the other hand, in right
panel, the results are shown for the PT template calculated in GR. In GR, the power spectrum template can be written as
functions of k, p, and the linear growth rate f, i.e., P (k,u; f). Here, incorporating the linear growth rate of the f(R)
gravity into the GR-based template, we derive the constraints on |fr,0| and ov, depicted as contour with orange color. The
contour with magenta color is the result taking account of the scale-dependent relative growth by introducing gravity bias,
On-body,F4(k) = b(k) dpr,cr(k) with b(k) = (1 + A2 k:z)/(l + Ai k) and marginalizing over the nuisance parameters A; and Az

[see Eq. 23) ].

Emax = 0.15 A Mpc~!. The meaning of color types are the
same as in Fig. [Gl and in each error contour, inner and
outer contours respectively represent the 1-o (68% C.L.)
and 2-0 (96% C.L.) constraints. Overall, the degeneracy
between |fro| and oy is weak, and the result suggests
that at the scales accessible by PT template, the model
parameter |fro| can be constrained down to O(107°)
from future RSD measurements.

Note, however, that this is only true when we properly
take account of the effect of modified gravity in comput-
ing the PT template. Most of the analysis in the litera-
ture considered the effect of modified gravity only in the
linear growth rate f and incorporated it into the GR-
based template to constrain the model parameter |fgr ol
using the measurements of RSD (e.g., [58, [59] for re-
cent works). The right panel of Fig. [1 indeed demon-
strates such a case. That is, we adopt the GR-based PT
template in which the effect of modified gravity is only
incorporated in the linear growth rate f. In GR, the
velocity-divergence field 6 is known to be factorized as
O(k;t) = fO(k;t), where 6 is perturbatively expanded
as O(k;t) = Yon D] 0,(k). As a result, at a given
redshift, the PT template of the redshift-space power
spectrum is described as the function of k, p and f,
i.e., PO)(k, pu; f). Since the growth rate f controlls the
strength of RSD, we naively expect that simply incorpo-
rating the scale-dependent f in modified gravity into the
PT template allows us to faithfully constrain the model

parameter | frol-

However, this actually leads to a biased estimation of
the model parameter | fr o], as shown in the contour with
orange color of Fig.[7l The reason for the large systematic
bias is ascribed to the fact that the modification of grav-
ity not only alters the linear growth rate but also affects
the shape of the real-space power spectra because of the
scale-dependent growth, as clearly shown in Fig.[2l Thus,
for an unbiased estimation of | fr 0|, we need to addition-
ally incorporate the effect of gravity bias, that accounts
for the relative difference of the clustering amplitude be-
tween GR and f(R) gravity, into the PT template. The
contour with magenta color is the results taking account
of this gravity bias, simply assuming the following rela-
tion:

1+ Ay k?
dn-body,Fa(k) = b(k) opr.cr(k); b(k) = Tfik’

(23)

where dn-body,ra is the density field in N-body simula-
tion, whilst dgr is the density field for the PT calcula-
tion. The function b(k) characterizes the scale-dependent
growth relative to the GR prediction, and we adopt here
the functional form similar to those frequently used to
model the galaxy bias (e.g., [71, [72]). Allowing the pa-
rameters A1 and A, to float, the result marginally repro-
duces the fiducial value of | fr o], and the goodness-of-fit
quantified by Xfed is improved. With the increased num-
ber of free parameters, however, constraining power is
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FIG. 8: MCMC results of the constraint on scale-dependent
linear growth rate. Using the GR-based PT template with the
improved model of RSD, we allow the linear growth rate f to
spatially vary in three wavenumber bins. Adopting the grav-
ity bias prescription given in Eq. (23) and fixing the maximum
wavenumber to kmax = 0.15 A Mpcfl, we derive the constraint
on f in each wavenumber bin. The vertical errorbars indicate
the 1-0 error assuming the cosmic-variance limited survey of
V =10h"2 Gpc?, and the dotted and solid lines respectively
represent the linear theory prediction and its binned average
in the underlying f(R) gravity model.

significantly reduced, and the size of error contour indeed
becomes large (c.f. left panel of Fig.[7). This proves that
the heterogeneous PT template is insufficient to tightly
constrain the model parameter of modified gravity, and
a full PT modeling taking proper account of the mod-
ified gravity is required for unlocking the full power of
precision RSD measurement.

B. Model-independent detection of a small
deviation from GR

Consider next the model-independent test of GR, and
discuss how well we can characterize or detect the scale
dependence of the linear growth rate, f. Here, for illus-
trative purpose, we examine the two simple cases. One is
to divide the power spectrum data into several wavenum-
ber bins, and in each bin, we try to estimate f to see a
possible deviation from spatially homogeneous f. The
other case is to assume a specific functional form of f,
and to constrain its parameters. In both cases, similar to
the analysis shown in right panel of Fig. [ we adopt the
GR-based PT template with an improved model of RSD
(i.e., TNS model), and take account of the gravity bias
in Eq. [Z3). We then fit the template to the monopole
and quadrupole power spectra at z = 1 measured from
N-body simulations of f(R) gravity with |fgr o = 107%.

Fig. B shows the result of MCMC analysis for the
binned linear growth rate, where we set kpax =
0.15hMpc~!, and divide the power spectrum data into

11

three equal bins. Dotted and solid lines represents the
linear growth rate of the f(R) gravity with and without
binning, while the vertical errorbars of the binned results
indicate the 1-o statistical uncertainty derived from the
MCMC analysis, marginalized over other nuisance pa-
rameters. Note that number of free parameters is 6. The
best-fit value of f in each bin is close to the fiducial value,
but slightly away from linear theory prediction except for
the central bin. As a result, the errorbars share almost
the same value of f, and no notable trend of the scale-
dependent growth is found from the binned estimate of

f.

Fig. @ examines the other case, in which we assume a
specific functional form of f given below:

fapprox(k) = fo [1 + € tanh(k/k.)] . (24)

Allowing the parameters fy, € and k. to float, we perform
the MCMC analysis. Again, the number of free parame-
ters is 6, and we set kmax = 0.15 A Mpc~!. Note that for
the scales of our interest, Eq. (24]) is shown to accurately
describe the scale-dependent linear growth rate of f(R)
gravity, and fitting directly Eq. (24)) to the linear theory
prediction at z = 1, we obtain fy = 0.83, ¢ = 0.17, and
k. =0.11 hMpc!.

The left panel of Fig. [0 shows the two-dimensional
projected errors on the parameters, fo, €, and k.. The
MCMC analysis of the RSD measurement favors non-zero
values of these parameters, strongly indicating a devia-
tion from spatially constant f. However, a closer look at
two-dimensional contours reveals a substantial difference
in € between the best-fit result and the directly fitted
value, 0.17. As a result, the MCMC result is unable to
reproduce the underlying scale-dependent linear growth
rate. Right panel of Fig. [0 shows the constraint on the
scale-dependence of f. Based on the best-fit values and
the associated 1-¢ errors shown in left panel of Fig. [0
the best-fit curve is plotted in red solid line, and its 1-
o statistical uncertainty is shown in red shaded region.
The scale-dependence inferred from the MCMC result is
rather stronger than that of the linear theory prediction
(black dashed).

These two examples imply that the model-independent
detection and characterization of the scale-dependent f
are generally difficult, and the results are rather sensitive
to the choice of parameterized form of the linear growth
rate. This is presumably because each of the parame-
ters characterizing the scale-dependent f cannot be de-
termined locally, but rather it must be estimated with a
wide range of wavenumber. Then the parameters tend to
be highly correlated with each other, leading to a biased
estimation. In this respect, a sophisticated treatment
with principal component analysis may provide a way to
robustly detect a scale-dependent f.
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FIG. 9: MCMC results of the constraint on the scale-dependent linear growth rate, assuming a specific functional form,
Sapprox (k) = fo[l + etanh(k/k.)] [Eq. 24)]. Using the GR-based PT template with the improved model of RSD, and adopting
the gravity bias in Eq. ([23), we derive the constraint on fo and ¢, and k.. Left panel shows the two-dimensional projected
constraints, and the crosses indicate the best-fit values. The inner and outer contours respectively represent the 1- and 2-o
statistical errors, assuming the cosmic-variance limited survey of V' =10 h~3 Gpc®. In the right panel, the best-fit curve of the
scale-dependent linear growth is plotted in a red solid line, and its 1-o statistical uncertainty is shown in a red shaded region.
For reference, the linear growth rate in the underlying f(R) gravity model is also plotted in a black dashed line.

V. CONCLUSION

In this paper, we studied how well we can clarify the
nature of gravity at large scales with redshift-space dis-
tortions (RSD), especially focusing on the quasilinear
regime of the gravitational evolution. While most of pre-
vious works have been done with the theoretical template
assuming GR as underlying gravity theory, we here de-
veloped a new perturbation theory (PT) prescription for
RSD in the general context of the modified gravity mod-
els. Extending our previous works on the improved model
of RSD proposed by Ref. m], we applied the standard
PT framework by Ref. [52], which has been formulated to
deal with a wide class of modified gravity models, to the
computation of the redshift-space power spectrum. As a
specific application, in this paper, we consider the f(R)
gravity model, and compared the PT prediction of RSD
with results of N-body simulations. Albeit the limited
applicable range of the standard PT, the PT results suc-
cessfully describe the N-body simulations, and the pre-
dicted monopole and quadrupole spectra quantitatively
agree with N-body results.

Then, we next considered how well we can character-
ize and/or constrain the deviation of gravity from GR.
One obvious approach is to first assume a specific mod-
ified theory of gravity as an underlying gravity model
and constrain their model parameters. Using the PT as
a theoretical template, we performed the parameter esti-
mation analysis, and checked if the theoretical template
correctly recovers the fiducial value of the model param-
eter in the N-body simulations. Adopting the improved

model of RSD [TNS model, Eq. @], a full PT template
calculated in the modified gravity model was found to
reproduce the correct model parameter, while a slight
deficit in the PT template led to a biased parameter es-
timation. As another approach, we have also examined
the model-independent analysis, and based on the PT
template calculated in GR, we tried to characterize the
scale-dependent linear growth rate from monopole and
quadrupole power spectra. Without assuming any mod-
ified gravity model, the parameterization of the scale-
dependent linear growth rate f is necessary, and the pa-
rameters characterizing f are highly correlated in gen-
eral. Our simple two examples suggest that the results
are highly sensitive to the choice of parameterization,
and it is generally difficult to characterize the scale-
dependence of f in an unbiased manner unless employing
some sophisticated methods such as principal component
analysis.

Throughout the paper, we have worked with the stan-
dard PT, but the standard PT is known to have a bad
convergence property. While we can still get a fruitful
constraint on modified gravity models, resummed PT
schemes with a wide applicable range are highly desirable
to improve the observational constraint. A development
of improved PT template in redshift space is an impor-
tant future direction (see [73, [74] for recent attempt).
Another important issue is the application of the present
prescription to the real measurement of RSD. With full
PT implementation of the theoretical template, a tight
cosmological constraint is expected to be obtained in a ro-
bust and unbiased way. In doing this, however, a proper



account of the galaxy bias would be crucial. Although the
present paper mainly focused on the matter power spec-
trum, the galaxy bias would be also affected by the mod-
ification of gravity, and this may produce a non-trivial
scale-dependent shape of the observed power spectrum.
In fact, the N-body study of the halo clustering proper-
ties has revealed that the halo bias in f(R) gravity is sys-
tematically lower than that in GR (e.g., |[75]). Since even
the velocity dispersion and clustering amplitude of the
dark matter distribution in f(R) gravity differ from those
in GR (see Figs. 2 and B in Sec. [T}, coupled with the
nonlinear gravity, this could impose a non-trivial trend
in the halo/galaxy bias (see e.g., | for recent study
on the abundance and clustering of halos and galaxies).
Hence, a careful study of the halo/galaxy bias is nec-
essary together with extensive tests with N-body mock
catalogs toward an unbiased test of gravity.

Acknowledgments

We are grateful to Elise Jennings for providing us the
power spectrum data of N-body simulations. We also
thank Baojiu Li and Gong-bo Zhao for allowing us to use
the simulation data. This work is supported in part by a
Grant-in-Aid for Scientific Research from the Japan So-
ciety for the Promotion of Science (No. 23740186 for T.H
and No. 24540257 for A.T). K.K is supported by STFC
grant ST/K0090X/1, the European Research Council
and the Leverhulme trust. T.H. acknowledges a support
from MEXT HPCI Strategic Program.

Appendix A: Basic equations for perturbations and
second-order kernels

In this appendix, after briefly reviewing the formal-
ism developed in Ref. @], we derive general expressions

for the second-order PT kernel Féz), as well as the lin-

ear growth factor Fél) in modified gravity models. In
Sec. [Ad]l we begin by reviewing the framework to treat
the evolution of matter fluctuations in modified grav-
ity models. We then develop the perturbation theory
and derive the PT kernels up to the second-order in
Sec. [A2l The explicit expressions for PT kernels are
given in specific modified gravity models, i.e., f(R) grav-
ity and Dvali-Gabadadze-Porratti (DGP) models.

1. Evolution equations

Let us first consider the matter sector. Apart from the
force law of gravity, the basic equations governing the
evolution of matter sector is basically described by the
conservation of energy momentum tensor, which would
remain unchanged even in the modified gravity model.
Hence, under the single-stream approximation, the mat-
ter fluctuations are treated as pressureless fluid flow,
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whose evolution equations are the continuity and Euler
equations:

06 1

ot + EV [(T+0)v] =0, (A1)
ov 1 1
E-FH’U-FE(’U'V)"U——va, (A2)

where 1) is the Newton potential.

On the other hand, for the gravity sector, there may
appear a new scalar degree of freedom referred to as the
scalaron, which results in a large-distance modification
to the gravity. On large scales, the scalaron ¢ medi-
ates the scalar force, and behaves like the Brans-Dicke
scalar field without potential and self-interactions, while
it should acquire some interaction terms on small scales,
which play an important role to recover GR. Indeed, for
several known mechanisms such as chameleon and Vain-
shtain mechanisms (e.g., [17, [1§]), the nonlinear interac-
tion terms naturally arise and eventually become domi-
nant, leading to a recovery of GR. As a result, even on
subhorizon scales, the Poisson equation is modified, and
is coupled to the field equation for scalaron ¢ with self-
interaction term:

(A3)
(A4)

with k2 = 87 G and wpp being the Brans-Dicke param-
eter. Here, we have used the quasi-static approximation
and neglected the time derivatives of the perturbed quan-
tities compared with the spatial derivatives. This treat-
ment is always valid as long as we consider the evolution
of matter fluctuations inside the Hubble horizon. The
function Z represents the nonlinear self-interaction, and
it can be expanded as

3 3
o) = any + [ ke

x Ma(k1, ka)p(k1)p(k2) + - -

In Fourier space, Eqs. (AT)-(A4) can be reduced to
a more compact form. Assuming the irrotationality of
fluid quantities, the velocity field is expressed in terms of
velocity divergence, § = V -v/(aH). Then, we have [52],

3 3
)y [t

5]3 (k — klg)
(A5)

k—ki2)

X Oé(kl,kg) 6‘(’61)5(’62), (AG)
g 20%) {2 + E} (k) + 0 {1 + %WG)Q } 6(k)

1 Bkid’k
-3 / W op(k — ki2) B(k1, k2) 0(k1)0(k2)

oL



with the mode-coupling kernels, a and S given by

ki ks
ki,ky) =1+ ——-
Oé( 1 2) + |k1|2 ’
(k1 - ko)|k1 + ko|?
ki, ko) =
Pk = T ek P

In the above, the function II characterizes the deviation
of the Newton constant from GR, while the quantity
S is originated from the non-linear interactions of the
scalaron, which is responsible for the recovery of GR at
small scales. The functional form of these are obtained
from the Poisson equation and field equation for scalaron,
and the expressions relevant for the second-order pertur-
bations are respectively given by [52]:

(k) = l {(3 + 2wBD)];_z + Ml(k)} )

3
1 52 o\ > [ Bk dPks
516 =gy (7)o o
x My (kq, kz)% (A8)

Here, in deriving the last expression, we perturbatively
solve the scalaron field ¢ in terms of § using Eqs. (A4
and (AR). The explicit functional form of II or Mj, and
My depends on actual modified gravity models, which
will be specified later.

2. PT kernels

Let us now perturbatively solve the evolution equations
(AG) and (AT). Consider first the linear-order solutions.

5O (k) + 28 50 (k) — L {1 +3 (ﬁﬁ); } 5®) (k) =
1Dy

X H(Dl +2HD;) Dy + D1D2} 12 + Tﬁm -

. Uiy 1 [ dkidks :
0 (k) = _Eé (k)+E/W5D(k—k12)a(k1,k2)l)1 Dgéo(kl)éo(kg)

where we introduced the short-hand notations, D; =
D(kl,t), Q12 = O[(k?l,kig), and Hz = H(kz) Then, the
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Ignoring all the non-linear terms in Egs. (Af) and (A7),
we obtain

5O (k) + 20 50 () — - Lm {1 N 1%}5@(@ _o,

00 (k) = — -5 () (A9)

The solutions 61 and #)) can be formally expressed as

D(k;t)

00 (kit) = D(k;t) dok), 0 (s t) = ===

60 (k)v
(A10)

where the function dg(k) is the initial density field [see
Eq. (II)]. The function D is the linear growth factor,
and satisfies the following evolution equation:

. . 52 m a2
D+2HD - 2” {1+%(];[/(k))}D=O. (A11)

Accordingly, the first-order PT kernels are

D(k;t)
T
Next consider the second-order solutions. Substitut-

ing the linear-order solutions into the right-hand side of

Egs. (A8) and (A7), the equations for second-order per-

turbations are

FO(kst) = D(kst),  FS(k;t) = — (A12)

A3k d3ko

Gy Ok —kiz)

(k12/a)? (Fé2pm ) 2 M;(ky1, k2)
1211 (1)

D1 Doy 60(’61)50(’62), (Al?))

3 11, 11,

(A14)

second-order PT solutions are formally written as



Ay d2k
5(2)(k;t):/#5[)(k—k12) [ (D(an 2+D(1a21)+

(27m)
3 3
6D (ks 1) H/d kid 2k2 5k — k)

X {2 {(DlDQ Dg %) Qg2+ (D2D1 D?i) 0‘2-,1} -

Thus, the symmetrized second-order PT kernels ( ) a

respectwely given by

F1(2)(k17k2; ) = (D§2)a1 2 +D§1)O¢2 1)

) Bro+ F), (A17)
2 1 (2
F2( )(,{71, kg; t) = E |: 5{(D1D2 — Dg)%) 01172
+ (DQD1 - Df{) au} —EC) 1o~ ) } (A18)

Here, the functions D%) D (ky, ko), E§22) =

E®(ky,ky), and F%) = F®(ky, ky) are the second-
order growth functlons whose governing equations are

L D (ky, ky)
= {D(ky) + 20D ()} D(ka) + D(k1) Dika), (A19)

£ B (k1 ko) = £ D) D(R), (A20)
L F®(ky, ky)
(k12/a)? [ K? pm 2M2(k71,k72)
‘12H<k12>< 3 > T TR © 1P 52)
(A21)

with the operator L given by

2 5 ,
ﬁ(ku,t)zd——l-?Hi—H P {1—}-1@}.
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B2 B +Ff?;} So(ki)boke),  (ALS)

E®) Bio— Ff‘?} So(k1) o (ks). (A16)

Below, we will present a more explicit expression for
evolution equations of the growth functions in f(R) grav-
ity and DGP models.

a. f(R) gravity models

In f(R) gravity models described in Eq. (), the
scalaron ¢ is identified with ¢ = fr — f [Eq. (I8)], and
it behaves like the Brans-Dicke scalar with wgp = 0 and
the nonlinear interaction Z(p) = R(fr) — R(fr). Then,
the functions IT and My are generally given by @]

M; (k1 k2) = R sy,
where we define R; = dR(fr)/dfr and Rj; =
d’R(fr)/df3. In f(R) gravity, all the second-order
growth functions D), E?) and F®) as well as the linear

growth factor D are scale-dependent, and no simplified
expressions are obtained without invoking any approxi-

dt? dt 2 3 1I(k12) mations. We numerically solve evolution equations be-
(A22) low:
|
Ly(k,t)D(k) =0, (A23)
. : : 2 1 (ki/a)?
L5 (k12,t) D@ (Key, k) = D(ky)D(k +’”’m{1+——}Dk D(k»), A24
k12, 8) D' (K1, k) = D(k1)D(k2) 5 3T /34 (bnja)? (k1)D(k2) (A24)
R 1. :
L (kig, t)E® (K, ko) = 5 D(E)D(k2), (A25)
. 1 (62pm\° k12/a)? R
cf<k12,t>F<2><k1,k2>———(" g ) _(hoja R — D(k)D(ks) (A26)
1203 Ry/3+ (ki2/a)* {R /3 + (k1/a)*}{R /3 + (k2/a)’}

with the linear operator being
d? d K2 pm 1 (k/a)?
Lkt +2H— 14+ c=—""""—
s(kit) = dt? a2 { 3R /3 + (k/a)?
(A27)

Here, the function D® is asymmetric with respect

} to the change of the arguments, ie., D®(ky, ko) #



D®)(ky,k1). The second-order growth functions are
generally given as the function of ki, ko, and ko =
|k? 4 k3 4 2(k; - ko)|'/2. Note that in deriving the evo-
lution equations above, we did not specify the functional
form of f(R), and the functions, R ; and Ry, still re-
mains unspecified. To solve the equations, in this paper,
we consider the specific function given in Eq. (I8), and
then the functions R ; and R ;f are expressed in terms
of the background quantities.

b. DGP model

As another example of modified gravity model, we con-
sider the Dvali-Gabadadze-Porratti (DGP) braneworld
model @] In DGP models, the Brans-Dicke parameter
of the scalaron becomes time-dependent, and is given by

[52]

WBD = g(ﬂ - 1),

H
=1—-2eHr. |1+ —],
153 € T<+3H2>

with € = =£1, which represents two distinct branches
of the background solutions (¢ = +1: self-accelerating
branch, ¢ = —1 : normal branch). The parameter 7. is
the crossover scale which characterizes the ratio of 5D
Newton constant to 4D Newton constant. In this model,
the nonlinear interaction of the scalaron comes from the
Vainshtein mechanism. As a result, the functions IT and
M, are respectively given by @]

(A28)

2
r
Mg(kl,kQ) = 2a—z {k% k% - (kl : k2)2'} )

Then, the second-order growth functions D?), E®) | and
F®) as well as the linear growth factor D become all
independent of scale.

To further get a simplified expression, we may employ
the Einstein-de Sitter approximation. In this approxima-
tion, the non-linear growth functions in the higher-order
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PT solutions are first obtained assuming the Einstein-de
Sitter background, and they are expressed in terms of the
scale factor. Then, simply replacing the scale factor with
the linear growth factor D(t), we obtain an approximate
description of the non-linear growth functions:

5
D@ — Z D(1),

= (A29)

1
E® - D2(t).

Here, the evolution equation for linear growth factor is
given by

. . 2
D+oHp T Pm (1+i>D_0. (A30)

2 35
Substituting Eq. (A29) into Eqs. (A7) and (AIS), we
obtain the approximate expressions for the symmetrized
PT kernels:
F? (o1, ko 1)

= DQ(t) {3 (a172 + 04271) + % ﬂl,Z} + (1 — uig) ﬁg(t),
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(A31)
FP (ky, ko t) = _%p@
(2)
X {% (a2 +a21) + ;5172} — (1—p3,) fT(t)7
(A32)

with p1,2 = (k1-k2)/(k1kz2). In the above, we rewrite the
second-order growth function F®) as F®) (ki ky) = (1—
uio) f ) with f® being the scale-independent function
satisfying the following evolution equation:

.. . 2 1
(2 Lo 2 _ K Pm 1+ — (2)
Y +2Hf 5 +3 3 f

_ e (K 2D2t A33
—s () o s

Egs. (A31) and coincide with the results in (B5)
and (B6) of Ref. [52]. The first term of the right-hand-
side in each kernel is exactly the same kernel as found in
GR, while the second term is originated from the non-
linear interactions of the scalar degree of freedom.
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