42 research outputs found

    Caloric Restriction Suppresses Microglial Activation and Prevents Neuroapoptosis Following Cortical Injury in Rats

    Get PDF
    Traumatic brain injury (TBI) is a widespread cause of death and a major source of adult disability. Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. One of the hallmarks of the secondary injury process is microglial activation resulting in increased cytokine production. Notwithstanding that recent studies demonstrated that caloric restriction (CR) lasting several months prior to an acute TBI exhibits neuroprotective properties, understanding how exactly CR influences secondary injury is still unclear. The goal of the present study was to examine whether CR (50% of daily food intake for 3 months) alleviates the effects of secondary injury on neuronal loss following cortical stab injury (CSI). To this end, we examined the effects of CR on the microglial activation, tumor necrosis factor-Ī± (TNF-Ī±) and caspase-3 expression in the ipsilateral (injured) cortex of the adult rats during the recovery period (from 2 to 28 days) after injury. Our results demonstrate that CR prior to CSI suppresses microglial activation, induction of TNF-Ī± and caspase-3, as well as neurodegeneration following injury. These results indicate that CR strongly attenuates the effects of secondary injury, thus suggesting that CR may increase the successful outcome following TBI

    BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat

    No full text
    Neurotrophins are established molecular mediators of neuronal plasticity in the adult brain. We analyzed the impact of aging on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) protein isoforms, their receptors, and on the expression patterns of multiple 5' exon-specific BDNF transcripts in the rat cortex and hippocampus throughout the life span of the rat (6, 12, 18, and 24 months of age). ProNGF was increased during aging in both structures. Mature NGF gradually decreased in the cortex, and, in 24-month-old animals, it was 30 % lower than that in adult 6-month-old rats. The BDNF expression did not change during aging, while proBDNF accumulated in the hippocampus of aged rats. Hippocampal total BDNF mRNA was lower in 12-month-old animals, mostly as a result of a decrease of BDNF transcripts 1 and 2. In contrast to the region-specific regulation of specific exon-containing BDNF mRNAs in adult animals, the same BDNF RNA isoforms (containing exons III, IV, or VI) were present in both brain structures of aged animals. Deficits in neurotrophin signaling were supported by the observed decrease in Trk receptor expression which was accompanied by lower levels of the two main downstream effector kinases, pAkt and protein kinase C. The proteolytic processing of p75NTR observed in 12-month-old rats points to an additional regulatory mechanism in early aging. The changes described herein could contribute to reduced brain plasticity underlying the age-dependent decline in cognitive function.Ministry of Education, Science and Technological Development of the Republic of Serbia [ON 173056

    Expression of cholesterol homeostasis genes in the brain of the male rat is affected by age and dietary restriction

    No full text
    Expression profiles of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), apolipoprotein E (ApoE) and cholesterol 24S-hydroxylase (CYP46), proteins involved in cholesterol biosynthesis, transport and excretion from the CNS, were analyzed in the rat cortex, hippocampus and cerebellum as a function of aging (6-24 months) and in response to long-term dietary restriction (DR). Age-related increases for all three mRNAs were observed, with the highest induction found for Cyp46 in the cortex and hippocampus of 24-month-old animals. DR maintained stable levels of Cyp46, HMGR, and ApoE mRNAs during aging, exhibiting an attenuating effect on age-related changes through specific temporal and regional pattern. Neither age nor DR had any prominent effects at the protein level, except for Cyp46 and ApoE protein levels in the hippocampus and cerebellum, respectively. Overall, the changes in the cerebellum were different from those in the cortex and hippocampus. Our results demonstrated a modulatory effect of DR on age-related changes of CYP46, HMGR, and ApoE and suggest that the anti-aging effect of DR is in part mediated though transcriptional modulation of cholesterol metabolism genes in the rat brain.Ministry of Science and Technological Development, Republic of Serbia [143 004

    BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat

    No full text
    Neurotrophins are established molecular mediators of neuronal plasticity in the adult brain. We analyzed the impact of aging on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) protein isoforms, their receptors, and on the expression patterns of multiple 5' exon-specific BDNF transcripts in the rat cortex and hippocampus throughout the life span of the rat (6, 12, 18, and 24 months of age). ProNGF was increased during aging in both structures. Mature NGF gradually decreased in the cortex, and, in 24-month-old animals, it was 30 % lower than that in adult 6-month-old rats. The BDNF expression did not change during aging, while proBDNF accumulated in the hippocampus of aged rats. Hippocampal total BDNF mRNA was lower in 12-month-old animals, mostly as a result of a decrease of BDNF transcripts 1 and 2. In contrast to the region-specific regulation of specific exon-containing BDNF mRNAs in adult animals, the same BDNF RNA isoforms (containing exons III, IV, or VI) were present in both brain structures of aged animals. Deficits in neurotrophin signaling were supported by the observed decrease in Trk receptor expression which was accompanied by lower levels of the two main downstream effector kinases, pAkt and protein kinase C. The proteolytic processing of p75NTR observed in 12-month-old rats points to an additional regulatory mechanism in early aging. The changes described herein could contribute to reduced brain plasticity underlying the age-dependent decline in cognitive function.Ministry of Education, Science and Technological Development of the Republic of Serbia [ON 173056

    Expression of cholesterol homeostasis genes in the brain of the male rat is affected by age and dietary restriction

    No full text
    Expression profiles of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), apolipoprotein E (ApoE) and cholesterol 24S-hydroxylase (CYP46), proteins involved in cholesterol biosynthesis, transport and excretion from the CNS, were analyzed in the rat cortex, hippocampus and cerebellum as a function of aging (6-24 months) and in response to long-term dietary restriction (DR). Age-related increases for all three mRNAs were observed, with the highest induction found for Cyp46 in the cortex and hippocampus of 24-month-old animals. DR maintained stable levels of Cyp46, HMGR, and ApoE mRNAs during aging, exhibiting an attenuating effect on age-related changes through specific temporal and regional pattern. Neither age nor DR had any prominent effects at the protein level, except for Cyp46 and ApoE protein levels in the hippocampus and cerebellum, respectively. Overall, the changes in the cerebellum were different from those in the cortex and hippocampus. Our results demonstrated a modulatory effect of DR on age-related changes of CYP46, HMGR, and ApoE and suggest that the anti-aging effect of DR is in part mediated though transcriptional modulation of cholesterol metabolism genes in the rat brain.Ministry of Science and Technological Development, Republic of Serbia [143 004

    Aging Induces Tissue-Specific Changes in Cholesterol Metabolism in Rat Brain and Liver

    No full text
    Disturbance of cholesterol homeostasis in the brain is coupled to age-related brain dysfunction. In the present work, we studied the relationship between aging and cholesterol metabolism in two brain regions, the cortex and hippocampus, as well as in the sera and liver of 6-, 12-, 18- and 24-month-old male Wistar rats. Using gas chromatography-mass spectrometry, we undertook a comparative analysis of the concentrations of cholesterol, its precursors and metabolites, as well as dietary-derived phytosterols. During aging, the concentrations of the three cholesterol precursors examined (lanosterol, lathosterol and desmosterol) were unchanged in the cortex, except for desmosterol which decreased (44 %) in 18-month-old rats. In the hippocampus, aging was associated with a significant reduction in lanosterol and lathosterol concentrations at 24 months (28 and 25 %, respectively), as well as by a significant decrease of desmosterol concentration at 18 and 24 months (36 and 51 %, respectively). In contrast, in the liver we detected age-induced increases in lanosterol and lathosterol concentrations, and no change in desmosterol concentration. The amounts of these sterols were lower than in the brain regions. In the cortex and hippocampus, desmosterol was the predominant cholesterol precursor. In the liver, lathosterol was the most abundant precursor. This ratio remained stable during aging. The most striking effect of aging observed in our study was a significant decrease in desmosterol concentration in the hippocampus which could reflect age-related reduced synaptic plasticity, thus representing one of the detrimental effects of advanced age.Ministry of Education, Science and Technological Development of the Republic of Serbia [ON173056]; FWO Pegasus Marie Curie Fellowshi
    corecore