3,103 research outputs found

    Dynamics of a bubble formed in double stranded DNA

    Full text link
    We study the fluctuational dynamics of a tagged base-pair in double stranded DNA. We calculate the drift force which acts on the tagged base-pair using a potential model that describes interactions at base pairs level and use it to construct a Fokker-Planck equation.The calculated displacement autocorrelation function is found to be in very good agreement with the experimental result of Altan-Bonnet {\it et. al.} Phys. Rev. Lett. {\bf 90}, 138101 (2003) over the entire time range of measurement. We calculate the most probable displacements which predominately contribute to the autocorrelation function and the half-time history of these displacements.Comment: 11 pages, 4 figures. submitted to Phys. Rev. Let

    Denaturation transition of stretched DNA

    Get PDF
    We generalize the Poland-Scheraga model to consider DNA denaturation in the presence of an external stretching force. We demonstrate the existence of a force-induced DNA denaturation transition and obtain the temperature-force phase diagram. The transition is determined by the loop exponent cc for which we find the new value c=4ν1/2c=4\nu-1/2 such that the transition is second order with c=1.85<2c=1.85<2 in d=3d=3. We show that a finite stretching force FF destabilizes DNA, corresponding to a lower melting temperature T(F)T(F), in agreement with single-molecule DNA stretching experiments.Comment: 5 pages, 3 figure

    Dynamical scaling of the DNA unzipping transition

    Get PDF
    We report studies of the equilibrium and the dynamics of a general set of lattice models which capture the essence of the force-induced or mechanical DNA unzipping transition. Besides yielding the whole equilibrium phase diagram in the force vs temperature plane, which reveals the presence of an interesting re-entrant unzipping transition for low T, these models enable us to characterize the dynamics of the process starting from a non-equilibrium initial condition. The thermal melting of the DNA strands displays a model dependent time evolution. On the contrary, our results suggest that the dynamical mechanism for the unzipping by force is very robust and the scaling behaviour does not depend on the details of the description we adopt.Comment: 6 pages, 4 figures, A shorter version of this paper appeared in Phys. Rev. Lett. 88, 028102 (2002

    Increased Expression of Tissue Factor and Receptor for Advanced Glycation End Products in Peripheral Blood Mononuclear Cells of Patients With Type 2 Diabetes Mellitus with Vascular Complications

    Get PDF
    The aim of the study was to determine the correlation between the expression of tissue factor (TF) and the receptor for advanced glycation end products (RAGEs) and vascular complications in patients with longstanding uncontrolled type 2 diabetes (T2D). TF and RAGE mRNAs as well as TF antigen and activity were investigated in 21 T2D patients with and without vascular complications. mRNA expression was assessed by reverse transcriptase–polymerase chain reaction (RT-PCR) in nonstimulated and advanced glycation end product (AGE) albumin–stimulated peripheral blood mononuclear cells (PBMCs). TF antigen expression was determined by enzyme-linked immunosorbent assay (ELISA) and TF activity by a modified prothrombin time assay. Basal RAGE mRNA expression was 0.2 ± 0.06 in patients with complications and 0.05 ± 0.06 patients without complications (P = .004). Stimulation did not cause any further increase in either group. TF mRNA was 0.58 ± 0.29 in patients with complications and 0.21 ± 0.18 in patients without complications (P = .003). Stimulation resulted in a nonsignificant increase in both groups. Basal TF activity (U/106 PBMCs) was 18.4 ± 13.2 in patients with complications and 6.96 ± 5.2 in patients without complications (P = .003). It increased 3-fold in both groups after stimulation (P = .001). TF antigen (pg/106 PBMCs) was 33.7 ± 28.6 in patients with complications, 10.4 ± 7.8 in patients without complications (P = .02). Stimulation tripled TF antigen in both groups of patients (P = .001). The RAGE/TF axis is up-regulated inT2Dpatients with vascular complications as compared to patients without complications. This suggests a role for this axis in the pathogenesis of vascular complications in T2D

    Pulling a polymer out of a potential well and the mechanical unzipping of DNA

    Full text link
    Motivated by the experiments on DNA under torsion, we consider the problem of pulling a polymer out of a potential well by a force applied to one of its ends. If the force is less than a critical value, then the process is activated and has an activation energy proportinal to the length of the chain. Above this critical value, the process is barrierless and will occur spontaneously. We use the Rouse model for the description of the dynamics of the peeling out and study the average behaviour of the chain, by replacing the random noise by its mean. The resultant mean-field equation is a nonlinear diffusion equation and hence rather difficult to analyze. We use physical arguments to convert this in to a moving boundary value problem, which can then be solved exactly. The result is that the time tpot_{po} required to pull out a polymer of NN segments scales like N2N^2. For models other than the Rouse, we argue that tpoN1+νt_{po}\sim N^{1+\nu}Comment: 11 pages, 6 figures. To appear in PhysicalReview

    Setting the stage for cohesion establishment by the replication fork

    Get PDF
    Comment on: Rudra S, et al. Cell Cycle 2012; 2114-2

    Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites

    Get PDF
    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in S. cerevisiae is qualitatively consistent with a `barrier nucleosome model', in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model, with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to ~1000 bp to each side.Comment: includes supporting materia

    Master equation approach to DNA-breathing in heteropolymer DNA

    Full text link
    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies between less than one to a few kT. This causes the opening of intermittent single-stranded bubbles. Their unzipping and zipping dynamics can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function for the bubble dynamics and the associated relaxation time spectrum. In particular, we show how one can obtain the probability densities of individual bubble lifetimes and of the waiting times between successive bubble events from the master equation. A comparison to results of a stochastic Gillespie simulation shows excellent agreement.Comment: 12 pages, 8 figure

    Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms

    Get PDF
    Recent evidence suggests that transcript elongation by RNA polymerase II (RNAPII) is regulated by mechanical cues affecting the entry into, and exit from, transcriptionally inactive states, including pausing and arrest. We present a single-molecule optical-trapping study of the interactions of RNAPII with transcription elongation factors TFIIS and TFIIF, which affect these processes. By monitoring the response of elongation complexes containing RNAPII and combinations of TFIIF and TFIIS to controlled mechanical loads, we find that both transcription factors are independently capable of restoring arrested RNAPII to productive elongation. TFIIS, in addition to its established role in promoting transcript cleavage, is found to relieve arrest by a second, cleavage-independent mechanism. TFIIF synergistically enhances some, but not all, of the activities of TFIIS. These studies also uncovered unexpected insights into the mechanisms underlying transient pauses. The direct visualization of pauses at near-base-pair resolution, together with the load dependence of the pause-entry phase, suggests that two distinct mechanisms may be at play: backtracking under forces that hinder transcription and a backtrack-independent activity under assisting loads. The measured pause lifetime distributions are inconsistent with prevailing views of backtracking as a purely diffusive process, suggesting instead that the extent of backtracking may be modulated by mechanisms intrinsic to RNAPII. Pauses triggered by inosine triphosphate misincorporation led to backtracking, even under assisting loads, and their lifetimes were reduced by TFIIS, particularly when aided by TFIIF. Overall, these experiments provide additional insights into how obstacles to transcription may be overcome by the concerted actions of multiple accessory factors

    Bubble coalescence in breathing DNA: Two vicious walkers in opposite potentials

    Full text link
    We investigate the coalescence of two DNA-bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribution of coalescence positions along the barrier. Below the melting temperature, we find a Kramers-type barrier crossing behaviour, while at high temperatures, the bubble corners perform drift-diffusion towards coalescence. The results are obtained by mapping the bubble dynamics on the problem of two vicious walkers in opposite potentials.Comment: 7 pages, 4 figure
    corecore