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We report studies of the equilibrium and the dynamics of a general set of lattice models which
capture the essence of the force-induced or mechanical DNA unzipping transition. Besides yielding
the whole equilibrium phase diagram in the force vs temperature plane, which reveals the presence
of an interesting re-entrant unzipping transition for low T , these models enable us to characterize
the dynamics of the process starting from a non-equilibrium initial condition. The thermal melting
of the DNA strands displays a model dependent time evolution. On the contrary, our results suggest
that the dynamical mechanism for the unzipping by force is very robust and the scaling behaviour
does not depend on the details of the description we adopt.

The replication of DNA is a correlated process involv-
ing many proteins and other molecules [1] working at dif-
ferent points in space and time. An understanding of the
nature and origin of this correlation is expected to shed
light on this complex mechanism. It has recently been
shown [2–6] that the force induced unzipping of DNA is a
genuine phase transition different from the thermal melt-
ing transition of DNA. It was then hypothesized [2] that
the initiation of replication at the origins along the DNA,
e.g, by dnaA for E.Coli [1,7] or by the “origin recognition
complex” (ORC) in eukaryotes [8] is like this unzipping
near the critical threshold (with dnaA or ORC acting
as the force-inducing agent) and the resulting correla-
tion during unzipping leads the co-operativity required
for replication.

In contrast to real biological situations, techniques
like laser tweezers [9], atomic force microscopes (AFM)
[10–12] etc have been used to study DNA by pulling at
one end. This has led to strand separation by force. In
particular, AFM experiments reported hysteresis in the
unzipping process, indicating the presence of a first or-
der transition. These mechanical unzipping experiments
have opened up new ways of thinking about DNA, just as
similar stretching experiments of DNA showed the pos-
sibility of several structures other than the most preva-
lent B-DNA [13]. The activities of polymerases, topoiso-
merase etc on single stranded DNA have now been ana-
lyzed in terms of the force they exert or the force applied
against them [14–16]. What needs to be investigated, to
mimic the biological situation, is the coupling between
the opening of the strands and the subsequent events
during replication. Such a study involves the dynamics
of the unzipping process [3].

The purpose of this paper is to define a set of sim-
pler models, in the spirit of Poland and Sheraga [17], for
which the unzipping transition can be studied exactly.
On the basis of this, the dynamics can be understood.
The proposed lattice models (bubble models: b-models)

incorporate the mutual-avoidance (hard-core repulsion)
of the strands (and also self-avoidance). A further simpli-
fication is obtained by suppressing the bubbles along the
chains, thereby defining a “fork model” or “Y-model”.
The phase diagram of the equilibrium system displays
in both cases a re-entrant region at low T : for a finite
range of forces the molecule gets unzipped by decreas-
ing the temperature. The dynamics of both the b- and
the Y-models in the various phases and on the phase
boundary are then studied, by starting from a zig-zag
non-equilibrium bound state as the initial condition. We
find that in all regimes above or below the critical line
in the phase diagram, the time evolutions of the order
parameters follow dynamical scaling laws.

The models and their equilibrium phase diagram:

We model the two strands of DNA by two directed self
and mutually avoiding walks. In two dimensions, on the
square lattice (see Fig.1), this means that the two walks
are forced to follow the positive direction of the diagonal
axis (1, 1) (i.e. the coordinate along the direction (1, 1),
to be called the z direction, always increases). The force
is then acting along the direction perpendicular to direc-
tion z, i.e., (−1, 1): this transverse direction is called the
x-direction. By measuring the x separation in unit of the
elementary square diagonal, we say that two complemen-
tary monomers are in contact when x = 1: a (positive)
binding energy ǫ is gained for each contact. Due to the
geometrical properties of the lattice, all these contacts
contributing to the energy involve monomers labelled by
the same z-coordinate, as one would require for base pair-
ing in DNA (see Fig. 1).
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FIG. 1. A typical configuration of the two DNA-strands as
modelled on a square lattice. Dashed lines indicate monomers
which are in contact. The quantities m and x are graphically
represented.

By fixing ǫ = +1 throughout the calculations, all the
thermodynamic properties of the system depend on the
temperature T = β−1 and on the force f . We have set
kB = 1. The partition function of the two n-step chains,
one starting at (0, 1) and the other at (1, 0) is

Zn(β, f) =
∑

x≥1

dn(x) exp (βfx) ∼ e−nβF , (1)

where dn(x) represents the fixed distance partition func-
tion, i.e., the sum over all interacting pairs of directed
chains whose last monomers are at distance x [18] and
F is the free energy density. The quantity dn(x) whose
β dependence has been omitted, obeys simple recursion
relations. In d = 2, on the square lattice, the recursion
relation is

dn+1(x) = [2dn(x) + dn(x + 1) + dn(x − 1)]

×
[

1 +
(

eβ − 1
)

δx,1

]

, (2)

valid for x ≥ 1 with the conditions d0(x) = δx,1 and
dn(0) = 0 for all n. Note that this kind of equation
appears also in other models of DNA [17,19] and in stud-
ies of random walks adsorption [20]. The model can be
asymptotically solved by locating the singularity closest
to the origin of its related generating function [21]

G(β, f) =

∞
∑

n=0

znZn(β, f). (3)

A phase transition is indicated by any singular change in
the location of the closest singularity.

With some simple calculations a critical line, fc(T ),
separating the zipped from the unzipped phase can be
obtained

fc(T ) = T cosh−1

[

1

2

1√
1 − e−β − 1 + e−β

− 1

]

, (4)

and it has been plotted in Fig. 2.

FIG. 2. The plot of the force vs. temperature phase dia-
gram for the model on the directed lattice.

At f = 0 the critical melting temperature is Tm =
1

log 4/3 , the critical force at T = 0 is f0 = 1 whereas

for f > fmax = 1.358806... the system is always in the
unzipped state. Similar results can be obtained for the
physically relevant three dimensional case and for higher
dimensions [6]. The average fraction of contacts Θ is zero
(not zero), when f > fc(T ) (f < fc(T )) while the average
end-to-end distance 〈x〉 = −N ∂F

∂f , where N is the num-

ber of base pairs in each chain, and the average number of
“liberated” monomers (i.e. from the last contact to the
end), m (See Fig. 1) have the opposite behavior. The
transition line is first order at any point with fc(T ) 6= 0
in d = 2, 3, 4, 5 and everywhere for d > 5.

We notice that there is a re-entrance in the f−T phase
diagram. For fmax > f > f0 the usual denaturation tran-
sition is present but if the temperature is further lowered
the two strands separate again through a “cold unzip-
ping” [22,23].

A further simplification to this model can be obtained
by suppressing the bubbles along the chain, i.e. by
considering only conformations having the first N − m
monomers bounded, whereas the remaining m are sepa-
rated in a Y-like conformation.

This Y-model will be extremely useful to study the un-
zipping dynamics and it presents a phase diagram simi-
lar to the one previously obtained but, for example, with
Tm = 1

log 2 , f0 = 1 and fmax = 1.282143... [24] in d=2.

Dynamics. We now consider the dynamics of the mod-
els previously introduced, the b-model of directed walks
and the simplified Y-model. In both cases, we start from
a non-equilibrium “zero-temperature” initial condition
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with the two chains zipped in a zig-zag configuration,
and let the system evolve at a temperature T and under
a force f , with T and f chosen so that the equilibrium
state is either on or above the critical line. The simpler
2-dimensional case will be presented first and the gener-
alization to higher dimensions will be discussed later.

The five regimes considered are marked A-E in Fig.
2. Numerically, a Monte-Carlo dynamics is used to mon-
itor the time evolution of the order parameters m and
x previously introduced (see also Fig. 1). For the dy-
namics, we selected only local physical moves, so that
the model should be the lattice counterpart of the Rouse
model in the continuum. In all cases we find that, far
from saturation, the order parameters evolve as power
laws as functions of time t: in particular we can define
two exponents θ1 and θ2 as

m(t) ∼ tθ1 , and x(t) − x(0) ∼ tθ2 , (5)

Notice that m and x in Eq. (5) refer to the ensemble
average values, but average signs have been omitted for
simplicity of notation. We in fact find the following dy-
namical scaling laws to hold:

m(t)

Nd1
= Gm

(

t

Nz1

)

,
x(t) − x(0)

Nd2
= Gx

(

t

Nz2

)

, (6)

where N is the length of the chains and Gm,x are two scal-
ing functions. Eq. 6 also defines the exponents d1,2 and

z1,2 for the two variables. Note that θ1 = d1

z1
, θ2 = d2

z2
and

that d1,2 can be obtained through equilibrium consider-

ations as one requires m(t)
t→∞∼ Nd1 and x(t)

t→∞∼ Nd2 .
The crossover to the equilibrium behavior is described
by the “dynamic” exponents z1,2. The possibility of the
two quantities having different relaxations is kept open
by two different exponents.

The values of the exponents in Eqs. (5) and (6) ob-
tained from simulations, for both the Y-model and the
b-model, are shown in Table I. They were obtained by
collapsing Monte-Carlo data according to eq. (6) and by
using a recently proposed search algorithm [26] (see Fig.
3)
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for various values of N : the col-

lapse of all curves indicates that d1 = 1, z1 = 4
3

and θ1 = 3
4
.

It is possible to explain the exponents for the Y-model
found numerically. There are two relevant mechanisms
which can drive the separation of the strands: the un-
binding of bases at the bifurcation point and the stretch-
ing of the strands at the extremes. The combination of
these two processes controls the overall behavior in dif-
ferent regimes.

Regime A: f = 0, T > Tm: Above the critical tem-
perature the dominance of the entropy implies that at
every time step one base pair breaks, yielding a linear
behavior with θ1 = 1 and d1 = 1. Also x(t) tends to in-

crease, up to its equilibrium value N
1
2 : this is reflected in

the equilibrium probability distribution Peq(x) which dis-
plays an upward derivative at x = 1. This suggests (see
[25]) that the dynamics of this quantity should be in the
same universality class of the one-dimensional Kardar-
Parisi-Zhang equation [25], and so θ2 = 1

3 , d2 = 1
2 , and

z2 = 3
2 .

Regime B: f = 0, T = Tm: In this regime θ1 = 1
2 =

z−1
1 because at criticality the probabilities to increase

and to decrease m are expected to be equal, so that m
performs, roughly speaking, a random walk in time with
reflecting boundaries at m = 0, N . Also for the end-to-
end distance, steps toward larger or smaller values of x
are equally probable, and this means that the equation
obeyed by x should stay in the same universality class
as the one-dimensional Edward-Wilkinson equation, and
therefore θ2 = 1

4 and z2 = 2.

Regime C: f > 0,T > Tm: The strands microscopi-
cally tend to stretch along the direction of the pulling
force. However, once we have pulled the two chains up
to an end-to-end distance x, to increase x further by one
unit we first need to move all the stretched part, which
would take a time typically of order x. In other words,
one has x(t + t0) ∼ x(t) + t0

x and we expect the dynam-

ical exponent θ2 to be 1
2 (of course θ1 = 1 as before and

d1 = d2 = 1).

Regime D: T < Tm,f > fc(T ): Here the only micro-
scopic mechanism for opening the fork is through the
applied force: the strands must stretch completely in the
vicinity of the bifurcation point and only at this point
will the fork liberate one more monomer, because oth-
erwise the opening is energetically very unlikely. Thus
we expect that x ∼ m and, using arguments as done for
regime C, θ1 = θ2 = 1

2 , d1 = d2 = 1. In ref. [3] it was
found, in the mean field approach and in a model resem-
bling our Y-model, that the time necessary to unzip the
two strands completely is of the order of N2. This is
in agreement with our analysis, but works only in this
regime.

Regime E: T < Tm,f = fc(T ): At criticality, one
expects that the cost for unzipping and zipping is the
same (the equilibrium probability distribution of having
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m monomers unzipped or an end-to-end distance equal
to x is flat), therefore x(t + t0) = x(t) ± t0

x with equal
probability. Therefore, the end-to-end distance makes a
random walk in the rescaled time t

x so that x ∼ ( t
x )

1
2

and θ2(= θ1) = 1
3 and d1 = d2 = 1 since at coexistence

there is a finite fraction of liberated monomers.

Another way of obtaining θ1 = 1
3 is to demand that a

kink liberated at the fork needs to diffuse out of the end
before the next one is released. In other words, the rate
of change of m is determined by the diffusion of a kink
over a distance m. The latter time-scale being of order
m−2, we expect dm/dt ∼ m−2 which gives m ∼ t

1
3 .

This simple model deserves some observations. Re-
markably, it displays two different time scales in its dy-
namics, mirrored in the difference of the exponents z1,2

in regimes A and C. The first time scale (t ∼ Nz1) quan-
tifies the time necessary for the unbinding (or unzipping)
of the bases while the second (t ∼ Nz2) gives the time
needed to open (and to stretch whenever f 6= 0) the
two chains up to their equilibrium end-to-end distance.
At T < Tm the two processes are virtually the same,
because the unbinding (or unzipping) is dragged by the
stretching. However, above Tm, the processes decouple
and the unbinding gets faster, being controlled by the
temperature, and therefore z1 < z2.

Furthermore, in the numerical calculations we found
large sample-to-sample fluctuations, thereby requiring a
huge number of runs to get good averages of m(t) and
x(t). This is due to the long time correlation that exists
in the system, which keeps samples with different initial
histories far apart for any t.

Turning to the b-model with bubbles, amazingly the
dynamical exponents in regimes B, E and D with T ≤ Tm

are the same as found in the Y-model. This establishes
that at T < Tm not only for statics, as we saw in the pre-
vious section, but also for the dynamics, bubbles are not
relevant in the scaling properties (for T = Tm the equal-
ity is due to another reason [27]). At T ≥ Tm, on the
other hand, the opening of bubbles heavily affects the
base unpairing process, unlike the Y-model case where
bubbles are forbidden. The length of the unzipped part
in the present case now can change by ±l(t), where l(t)
is the typical length of bubbles, and the motion of the
fork point can by no means be approximated by a simple
random walk ( and so θ1 changes as shown in Table I).
The quantity x(t) instead has a dynamics in the b-model
similar to the fork case and indeed θ2 is the same for both
the models in all regimes. We show in Fig.3 the collapse
leading to θ1 = 3

4 in regime A.

An important question is that of the dependence of
these results on dimensionality. As for the Y-model,
the arguments we gave suggest that there be no d-
dependence. For the b-model, instead, this should be
true only in regimes D and E for T < Tm, where the
Y-model gives the exact result; at T ≥ Tm, on the other
hand, bubbles play a dominant role and so we expect a
dependence on d. We confirmed this picture with some

calculations on a simpler model which should be in the
same universality class of the one under study: that of a
single random walk, pinned at the origin by an attractive
interaction and subject to a stretching external force. In
this system m is defined as the number of monomers from
the last visit to the origin to the end of the walk. For
T > Tm, in regimes A and C, our calculations show that
the exponent θ1 increases as dimension increases, appar-
ently with no upper critical dimension. Just at criticality
at zero force, instead, we find that the exponent θ1 is very
close to 1

2 in any d. The emerging picture of robust results
for T < Tm and model-dependent dynamics for T ≥ Tm

would be preserved even if, in the original models, the
directedness constraint is relaxed (as is the case for the
statics [23]).

The arguments presented so far could be generalized
to add other ingredients of dynamics also. An example is
the nonlocal effects in dynamics, as is the case e.g. in the
Zimm model. In ref. [3], the author suggests that, in the
regime we call D, in the mean field approximation, non-
locality could speed up the opening so that θ1,2 would
be 1

1+u instead of 1
2 (u is the exponent characterizing the

length dependence of the mobility as defined, e.g., for the
Zimm model, see [3] for the notation and [29] for a re-
view). In regime E, we can combine our arguments with
the same reasoning to get θ1 = θ2 = 1

2+u . As we expect,
the Rouse model results are obtained with u = 1.

Lastly, the above analysis can also be extended to
binary disorder in the contact potential, which is of
course a realistic feature to be included in the model,
i.e. the energy of the contact of the i-th base may
be ǫi = ǫ + ∆i, ∆i being a random variable with bi-
nary distribution and zero mean. The Y-model offers
a good starting point for the study of the effects of
heterogeneity, because the critical line of the quenched
model can be proved to be the same as that of the pure
model with energy ǫ. If we call F(m) the free energy
density of a configuration with m (out of N) unzipped
monomers, we expect on general grounds that P (m, t),
the probability of having m monomers unzipped at time
t, will obey a master equation with transition rates W±,m

depending on the realization of disorder, i.e. we ex-

pect that W±,m ∝ min
{

e∓βN
dF(m)

dm , 1
}

, with Nβ dF(m)
dm

= +∆N−m

T + ǫ
T − log(1 + cosh( f

T )) [28], which can be

seen to consist of a zero-mean random “noise” (∆N−m

T )
plus a “bias”. We thus believe that the dynamics of the
Y-model can be mapped onto Temkin’s model of a ran-
dom walker in a random environment [30] (provided that
at T < Tm we rescale time as described above in regimes
D and E ), so that, following Ref. [31], there will be
a region around the critical line, at T < Tm, in which
m, x ≪ t

1
2 (and just on the critical line at f 6= 0 one

is tempted to expect m, x ∼
(

log
(

t
x

))2
). The quantities

m, x are now quenched averages over realizations of dis-
order. The scenario we propose is sketched in Fig.4. The
curve bounding the region where, at T < Tm, disorder
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should be important for the dynamics has been found
by applying the criterion of Ref. [31] to the system with
the above transition rates. This curve coincides with the
critical line of the static model with annealed disordered.
Preliminary runs at very low T suggest that as T → 0,
for a given realization of disorder and with any force be-
tween ǫ1 and ǫ2 (the two binding energies), the unzipping
will take place as far as the first more attractive base
pair is found. Besides, the probability that the monomer
of index m0 will ever be unzipped decays exponentially:
P (m0) ∝ 2−m0 . This is consistent with the mapping sug-
gested above. A detailed study of the effect of disorder
will be done elsewhere.

Conclusion. We obtained the phase diagram of a lattice
model for the unzipping transition of a double stranded
DNA by a force. This model incorporates both the mu-
tual and self-avoiding nature of the two strands and the
equilibrium problem can be solved exactly. A still simpler
model has been defined by suppressing the bubbles that
are important for thermal denaturation. This simpler
version is also exactly solvable and is shown to retain the
basic features of the b-model. Thanks to the exact knowl-
edge of the phase boundary, we have been able to inves-
tigate the dynamics of unzipping from a non-equilibrium
bound state both on and away from the phase bound-
ary. The dynamics shows scaling behaviors in different
regimes of the phase diagram. These scalings in most
cases could be understood from the plausible mechanisms
of unzipping and denaturation as discussed in the previ-
ous sections. We end with two notable features. In the
case of the b-model with bubbles, the unzipping at high
temperatures remains a puzzling issue, especially the dy-
namic exponent z1 = 4

3 with or without force. We believe
that this has to do with the statistics of bubbles, though
no satisfactory answer could be found. This remains an
open problem. Lastly, on a positive note, the unzipping
dynamics on the phase boundary in the presence of a
force is found to be distinctly different from the thermal
denaturation at zero force. Whether a real biological sys-
tem takes advantage of these differences to distinguish
the unzipped region of DNA from a fluctuation-induced
bubble formation remains to be probed.

m
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<1 aT
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<1

2
εpure

annealed
1.5

1

0.5

0

2

1/2

<1/2

2.520 0.5 1 1.5

FIG. 4. Plots of the phase diagram for homo-DNA (top)
made up of the more attractive base (ǫ2 > ǫ1), and for the
annealed (middle) and quenched (bottom) disordered models.
The numbers refer to the values of the exponent θ1 in the var-
ious regions of the phase diagram, which we believe to hold
on the basis of the mapping onto Temkin’s model. Note that
above the annealed critical line at T < Tm and everywhere at
T > Ta the pure system results are recovered. Interestingly,
the annealed line does not show the re-entrant behavior found
in Section II and in the quenched system. “?” indicates the
regime where we do not have numerical evidence in support of
our results. We took ǫ2 = 1.5 and ǫ1 = 0.5 in the calculations.

Regime d1 z1 θ1 d2 z2 θ2

A:Y 1 1 1 1/2 3/2 1/3
A:b 1 4/3 3/4 1/2 3/2 1/3

B:Y 1 2 1/2 1/2 2 1/4
B:b 1 2 1/2 1/2 2 1/4

C:Y 1 1 1 1 2 1/2
seb C:b 1 4/3 3/4 1 2 1/2

D:Y 1 2 1/2 1 2 1/2
D:b 1 2 1/2 1 2 1/2

E:Y 1 3 1/3 1 3 1/3
E:b 1 3 1/3 1 3 1/3

TABLE I. ”Dynamic” and equilibrium exponents for the
Y-model (Y) and the b-model with bubbles (b) as defined in
eq.(6). The regimes A,B,C,D and E are those shown in Fig.1.
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