29 research outputs found

    Drug Treatment of Hypertension: Focus on Vascular Health

    Full text link

    Involvement of Arterial Stiffness and Inflammation in Hyperuricemia-Related Development of Hypertension

    No full text

    High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity

    No full text
    A deficiency in nitric oxide (NO) generation leads to salt-sensitive hypertension, but the role of increased superoxide (O2−) in such salt sensitivity has not been delineated. We examined the hypothesis that an enhancement in O2− activity induced by high-salt (HS) intake under deficient NO production contributes to the development of salt-sensitive hypertension. Endothelial NO synthase knockout (eNOS KO; total n = 64) and wild-type (WT; total n = 58) mice were given diets containing either normal (NS; 0.4%) or high-salt (HS; 4%) for 2 wk. During this period, mice were chronically treated with a O2− scavenger, tempol (400 mg/l), or an inhibitor of NADPH oxidase, apocynin (1 g/l), in drinking water or left untreated (n = 6–8 per group). Blood pressure was measured by radiotelemetry and 24-h urine samples were collected in metabolic cages. Basal mean arterial pressure (MAP) in eNOS KO was higher (125 ± 4 vs. 106 ± 3 mmHg) compared with WT. Feeding HS diet did not alter MAP in WT but increased it in eNOS KO to 166 ± 9 mmHg. Both tempol and apocynin treatment significantly attenuated the MAP response to HS in eNOS KO (134 ± 3 and 139 ± 4 mmHg, respectively). Basal urinary 8-isoprostane excretion rates (UIsoV), a marker for endogenous O2− activity, were similar (2.8 ± 0.2 and 2.4 ± 0.3 ng/day) in both eNOS KO and WT mice. However, HS increased UIsoV more in eNOS KO than in WT (4.6 ± 0.3 vs. 3.8 ± 0.2 ng/day); these were significantly attenuated by both tempol and apocynin treatment. These data indicate that an enhancement in O2− activity contributes substantially to the development of salt-sensitive hypertension under NO-deficient conditions

    Blockade of endothelin receptors attenuates end-organ damage in homozygous hypertensive Ren-2 transgenic rats

    No full text
    Background/Aims: A growing body of evidence suggests that the interplay between the endothelin (ET) and the renin-angiotensin systems (RAS) plays an important role in the development of the malignant phase of hypertension. The present study was performed to evaluate the role of an interaction between ET and RAS in the development of hypertension and hypertension-associated end-organ damage in homozygous male transgenic rats harboring the mouse Ren-2 renin gene (TGRs) under conditions of normal-salt (NS, 0.45% NaCl) and high-salt (HS, 2% NaCl) intake. Methods: Twenty-eight-day-old homozygous male TGRs and age-matched transgenenegative male normotensive Hannover Sprague-Dawley (HanSD) rats were randomly assigned to groups with NS or HS intake. Nonselective ET A/B receptor blockade was achieved with bosentan (100 mg/kg/day). Systolic blood pressure (BP) was measured in conscious animals by tail plethysmography. Rats were placed into metabolic cages to determine proteinuria and clearance of endogenous creatinine. At the end of the experiment the final arterial BP was measured directly in anesthetized rats. Kidneys were taken for morphological examination. Results: All male HanSD fed either the NS or HS diet exhibited a 100% survival rate until 180 days of age (end of experiment). The survival rate in untreated homozygous male TGRs fed the NS diet was 41%, which was markedly improved by treatment with bosentan to 88%. The HS diet reduced the survival rate in homozygous male TGRs to 10%. The survival rate in homozygous male TGRs on the HS diet was significantly improved by bosentan to 69%. Treatment with bosentan did not influence either the course of hypertension or the final levels of BP in any of the experimental groups of HanSD rats or TGRs. Although the ET-1 content in the renal cortex did not dif-fer between HanSD rats and TGRs, ET-1 in the left heart ventricle of TGRs fed the HS diet was significantly higher compared with all other groups. Administration of bosentan to homozygous male TGRs fed either the NS or HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. Conclusions: Our data show that nonselective ET A/B receptor blockade markedly improves the survival rate and ameliorates end-organ damage in homozygous male TGRs without significantly lowering BP

    Chronic endothelin receptor blockade reduces end-organ damage independently of blood pressure effects in salt-loaded heterozygous Ren-2 transgenic rats

    No full text
    The present study was performed to evaluate the role of an interaction between the endothelin (ET) and the renin-angiotensin systems (RAS) in the development and maintenance of hypertension and in hypertension-associated end-organ damage in heterozygous male and female transgenic rats harboring the mouse Ren-2 renin gene (TGR). Twenty-eight days old heterozygous TGR and age-matched transgene-negative normotensive Hannover Sprague-Dawley rats (HanSD) were randomly assigned to groups with normal-salt (NS) or high-salt (HS) intake. Nonselective ET A/ET B receptor blockade was achieved with bosentan (100 mg.kg -1.day -1). All male and female HanSD as well as heterozygous TGR on NS exhibited 100% survival rate until 180 days of age (end of experiment). HS diet in heterozygous TGR induced a transition from benign to malignant phase hypertension. The survival rates in male and in female heterozygous TGR on the HS diet were 46% and 80%, respectively, and were significantly improved by administration of bosentan to 76% and 97%, respectively. Treatment with bosentan did not influence either the course of hypertension (measured by plethysmography in conscious animals) or the final levels of blood pressure (measured by a direct method in anesthetized rats) in any of the experimental groups of HanSD or TGR. Administration of bosentan in heterozygous TGR fed the HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. Our data show that the ET receptor blockade markedly improves the survival rate and ameliorates end-organ damage in heterozygous TGR exposed to HS diet. These findings indicate that the interaction between the RAS and ET systems plays an important role in the development of hypertension-associated end-organ damage in TGR exposed to salt-loading
    corecore