64 research outputs found

    Increasing Prevalence of Myopia in Europe and the Impact of Education

    Get PDF
    Purpose To investigate whether myopia is becoming more common across Europe and explore whether increasing education levels, an important environmental risk factor for myopia, might explain any temporal trend. Design Meta-analysis of population-based, cross-sectional studies from the European Eye Epidemiology (E3) Consortium. Participants The E3 Consortium is a collaborative network of epidemiological studies of common eye diseases in adults across Europe. Refractive data were available for 61 946 participants from 15 population-based studies performed between 1990 and 2013; participants had a range of median ages from 44 to 78 years. Methods Noncycloplegic refraction, year of birth, and highest educational level achieved were obtained for all participants. Myopia was defined as a mean spherical equivalent ≤-0.75 diopters. A random-effects meta-analysis of age-specific myopia prevalence was performed, with sequential analyses stratified by year of birth and highest level of educational attainment. Main Outcome Measures Variation in age-specific myopia prevalence for differing years of birth and educational level. Results There was a significant cohort effect for increasing myopia prevalence across more recent birth decades; age-standardized myopia prevalence increased from 17.8% (95% confidence interval [CI], 17.6-18.1) to 23.5% (95% CI, 23.2-23.7) in those born between 1910 and 1939 compared with 1940 and 1979 (P = 0.03). Education was significantly associated with myopia; for those completing primary, secondary, and higher education, the age-standardized prevalences were 25.4% (CI, 25.0-25.8), 29.1% (CI, 28.8-29.5), and 36.6% (CI, 36.1-37.2), respectively. Although more recent birth cohorts were more educated, this did not fully explain the cohort effect. Compared with the reference risk of participants born in the 1920s with only primary education, higher education or being born in the 1960s doubled the myopia prevalence ratio-2.43 (CI, 1.26-4.17) and 2.62 (CI, 1.31-5.00), respectively - whereas individuals born in the 1960s and completing higher education had approximately 4 times the reference risk: a prevalence ratio of 3.76 (CI, 2.21-6.57). Conclusions Myopia is becoming more common in Europe; although education levels have increased and are associated with myopia, higher education seems to be an additive rather than explanatory factor. Increasing levels of myopia carry significant clinical and economic implications, with more people at risk of the sight-threatening complications associated with high myopia

    Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci

    Get PDF
    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25610-8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genomewide significant association

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future

    Get PDF
    Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
    corecore