186 research outputs found

    Development of dual X-mode Doppler reflectometry system in Heliotron J

    Get PDF
    A dual X-mode Doppler reflectometry system is developed to measure the radial electric field in a stellarator/heliotron device, Heliotron J. The system is designed to have dual channels where the observation points are placed symmetrically to the equatorial plane, enabling the poloidal flow velocity measurement at two different positions in the same toroidal section, which is useful for the search for a zonal flow. In the system, an RF source generates the microwave frequency of 8.25–12.5 GHz, upconverted by an intermediate frequency of 27.5 MHz and transmitted with a coaxial cable to a transmitter located near the Heliotoron J vacuum vessel. After quadrupling the RF waves at the transmitter, the microwaves of 33–50 GHz are injected in X-mode into a plasma using a spherical focusing mirror installed inside the vacuum vessel. The local wavenumber of the probing microwaves, k⊥, is 1.56–1.66 cm⁻¹. The Doppler-shifted reflected wave is downconverted to a 110 MHz signal by mixing with the LO at the receiver, amplified, and then detected by an I/Q detector. In a tabletop test, we have confirmed that the phase estimated by the I/Q detector is proportionally changed as a function of the horn antenna distance. We have successfully measured the Doppler-shifted spectra of the I/Q signals and estimated the radial electric field in an electron cyclotron heated (ECH) plasma

    Density fluctuation measurements using beam emission spectroscopy on Heliotron J

    Get PDF
    Contributed paper, published as part of the Proceedings of the 19th Topical Conference on High Temperature Plasma Diagnostics, Monterey, California, May 2012.This paper describes the measurement of the density fluctuation using beamemission spectroscopy in Heliotron J, having the non-symmetrical helical-magnetic-axis configuration. In order to optimize the sightlines, the numerical calculations are carried out to estimate the spatial resolution and the observation location. When a tangential neutral beam is used as diagnostic one, suitable sightlines from the newly installed diagnostic port are selected whose spatial resolution Δρ is less than ±0.07 over the entire plasma region. Modification of the interference filter and the detection systems enables us to measure the radial profile of the density fluctuation. Each of the three coherent modes due to the fast-ion-driven magnetohydrodynamic instabilities has different radial structure of the density fluctuation

    Three-dimensional dynamics of fluctuations appearing during pellet ablation process around a pellet in a fusion plasma experiment

    Get PDF
    核融合プラズマへの燃料供給ペレット周辺の極限状況下に現れる“揺らぎ”構造の発見 --核融合炉の持続的燃焼の制御向上への貢献に期待--. 京都大学プレスリリース. 2022-09-30.Understanding pellet ablation physics is crucial to realizing efficient fueling into a high temperature plasma for the steady state operation of ITER and future fusion reactors. Here we report the first observation of the formation of fluctuation structures in the pellet plasmoid during the pellet ablation process by a fast camera in a medium-sized fusion device, Heliotron J. The fluctuation has a normalized fluctuation level of ~ 15% and propagates around the moving pellet across the magnetic field. By comparing the fluctuation structures with the shape of magnetic field lines calculated with the field line tracing code, we successfully reconstruct the spatio-temporal structure of the fluctuations during the pellet ablation process. The fluctuations are located at the locations displaced toroidally from the pellet and propagate in the cross-field direction around the pellet axis along the field line, indicating a three-dimensional behavior and structure of fluctuations. The fluctuation would be driven by a strong inhomogeneity formed around the pellet and invoke the relaxation of the gradient through a cross-field transport induced by the fluctuations, which could affect the pellet ablation and pellet fueling processes. Such fluctuations can be ubiquitously present at the inhomogeneity formed around a pellet in the pellet ablation process in fusion devices
    corecore