292 research outputs found

    Kondo Physics and Exact Solvability of Double Dots Systems

    Full text link
    We study two double dot systems, one with dots in parallel and one with dots in series, and argue they admit an exact solution via the Bethe ansatz. In the case of parallel dots we exploit the exact solution to extract the behavior of the linear response conductance. The linear response conductance of the parallel dot system possesses multiple Kondo effects, including a Kondo effect enhanced by a nonpertubative antiferromagnetic RKKY interaction, has conductance zeros in the mixed valence regime, and obeys a non-trivial form of the Friedel sum rule.Comment: 4 pages, 2 figures; v2: published form to appear in August 2007 issue of Phys. Rev. Let

    Massless Boundary Sine-Gordon at the Free Fermion Point: Correlation and Partition Functions with Applications to Quantum Wires

    Full text link
    In this report we compute the boundary states (including the boundary entropy) for the boundary sine-Gordon theory. From the boundary states, we derive both correlation and partition functions. Through the partition function, we show that boundary sine-Gordon maps onto a doubled boundary Ising model. With the current-current correlators, we calculate for finite system size the ac-conductance of tunneling quantum wires with dimensionless free conductance 1/2 (or, alternatively interacting quantum Hall edges at filling fraction 1/2). In the dc limit, the results of C. Kane and M. Fisher, Phys. Rev. B46 (1992) 15233, are reproduced.Comment: 24 pages; Tex with harvmac macros; 4 Postscript figures, uuencode

    A Renormalization Group For Treating 2D Coupled Arrays of Continuum 1D Systems

    Get PDF
    We study the spectrum of two dimensional coupled arrays of continuum one-dimensional systems by wedding a density matrix renormalization group procedure to a renormalization group improved truncated spectrum approach. To illustrate the approach we study the spectrum of large arrays of coupled quantum Ising chains. We demonstrate explicitly that the method can treat the various regimes of chains, in particular the three dimensional Ising ordering transition the chains undergo as a function of interchain coupling.Comment: 5 pages, 4 figure

    Exciton Hierarchies in Gapped Carbon Nanotubes

    Full text link
    We present evidence that the strong electron-electron interactions in gapped carbon nanotubes lead to finite hierarchies of excitons within a given nanotube subband. We study these hierarchies by employing a field theoretic reduction of the gapped carbon nanotube permitting electron-electron interactions to be treated exactly. We analyze this reduction by employing a Wilsonian-like numerical renormalization group. We are so able to determine the gap ratios of the one-photon excitons as a function of the effective strength of interactions. We also determine within the same subband the gaps of the two-photon excitons, the single particle gaps, as well as a subset of the dark excitons. The strong electron-electron interactions in addition lead to strongly renormalized dispersion relations where the consequences of spin-charge separation can be readily observed.Comment: 8 pages, 4 figure

    Orbital Dependence of Quasiparticle Lifetimes in Sr2RuO4

    Full text link
    Using a phenomenological Hamiltonian, we investigate the quasiparticle lifetimes and dispersions in the three low energy bands, gamma, beta, and alpha of Sr2RuO4. Couplings in the Hamiltonian are fixed so as to produce the mass renormalization as measured in magneto-oscillation experiments. We thus find reasonable agreement in all bands between our computed lifetimes and those measured in ARPES experiments by Kidd et al. [1] and Ingle et al. [2]. In comparing computed to measured quasiparticle dispersions, we however find good agreement in the alpha-band alone.Comment: 7 pages, 5 figure

    Tree tensor networks and entanglement spectra

    Get PDF
    A tree tensor network variational method is proposed to simulate quantum many-body systems with global symmetries where the optimization is reduced to individual charge configurations. A computational scheme is presented, how to extract the entanglement spectra in a bipartite splitting of a loopless tensor network across multiple links of the network, by constructing a matrix product operator for the reduced density operator and simulating its eigenstates. The entanglement spectra of 2 x L, 3 x L and 4 x L with either open or periodic boundary conditions on the rungs are studied using the presented methods, where it is found that the entanglement spectrum depends not only on the subsystem but also on the boundaries between the subsystems.Comment: 16 pages, 16 figures (20 PDF figures
    corecore