7 research outputs found

    Effect of dietary grape pomace on fats digestibility in horses

    Get PDF
    Submitted 2020-07-02 | Accepted 2020-08-24 | Available 2020-12-01https://doi.org/10.15414/afz.2020.23.mi-fpap.132-136The present study aimed to analyse dried grape pomace as a possible source of crude fat and polyunsaturated fatty acids in equine nutrition, as well as its effect on apparent digestibility of crude fat and selected fatty acids. Twelve clinically healthy sport horses were used in the feeding trial (Slovak warm blood breed). Animals were divided into three groups; control group (without supplementation) and two experimental groups where diets were enriched by 200 g and 400 g of dried grape pomace, respectively. Digestibility analysis was carried out by total faeces collection method. Crude fat of feeds and faeces, extracted by Soxhlet-Henkel method, was subsequently subjected to fatty acid profile analysis by gas chromatography. Grape pomace contained 96.17 g.kg-1 of crude fat with linoleic (70.03% in fat) and oleic (15.86% in fat) as the most abundant fatty acids. An indication (P>0.05) of higher digestibility of crude fat and oleic acid in both experimental groups, in comparison with control group, was detected. The digestibility of palmitic, linoleic, α-linolenic and cis-11-eicosenoic acids was not affected by dried grape pomace consumption (P>0.05). Based on the results of this experiment, dried grape pomace had no significant effect neither on digestibility of crude fat nor on the selected fatty acids. However, this winery by-product could be used as an alternative source of crude fat in equine diets.Keywords: crude fat, equine, polyunsaturated fatty acid utilisation, wine by-productsReferencesAslanian, A., Dizaji, A. A., Farhoomand, P., Shahryar, H. A., Sis, N. M., & Rouhnavaz, S. (2011). Characterization of the nutritive value and protein fractions the cornell net carbohydrate and protein system in White and Red Grape (Vitis vinifera sp.) Pomace. Research Journal of Biological Sciences, 6(7), 298-303.Azevêdo, J. A. G., Valadares Filho, S. C., Pina, D. S., Detmann, E., Pereira, L. G. R., Valadares, R. F. D., ... & Benedeti, P. B. (2012). Nutritional diversity of agricultural and agro-industrial by-products for ruminant feeding. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 64(5), 1246-1255. https://doi.org/10.1590/S0102-09352012000500024Brenes, A., Viveros, A., Chamorro, S., & Arija, I. (2016). Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Animal Feed Science and Technology, 211, 1-17. https://doi.org/10.1016/j.anifeedsci.2015.09.016Burke, J. B. Equine International. (2009). Feeding Equine Athletes. Equine International, 1(2), 28-30.Davies, J. A., Krebs, G. L., Barnes, A., Pant, I., & McGrath, P. J. (2009). Feeding grape seed extract to horses: effects on health, intake and digestion. Animal, 3(3), 380-384.European Union. (2009). Commission regulation (EC) No 152/2009 of 27 Jan. 2009: Laying down the methods of sampling and analysis for the official control of feed.Foiklang, S., Wanapat, M., & Norrapoke, T. (2016). Effect of grape pomace powder, mangosteen peel powder and monensin on nutrient digestibility, rumen fermentation, nitrogen balance and microbial protein synthesis in dairy steers. Asian-Australasian Journal of Animal Sciences, 29(10), 1416-1423. https://doi.org/10.5713/ajas.15.0689Gálik, B., Kolláthová, R., Rolinec, M., Juráček, M., Šimko, M., Hanušovský, O., Bíro, D., Vašeková, P., Kolesárová, A., Barantal, S. (2019). Grape by-products as bioactive substances in animal nutrition: A review. Agriculture and Food, 7, 67-172.Georgiev, V., Ananga, A., & Tsolova, V. (2014). Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6(1), 391-415. https://doi.org/10.3390/nu6010391Gülcü, M., Uslu, N., Özcan, M. M., Gökmen, F., Özcan, M. M., Banjanin, T., … Lemiasheuski, V. (2019). The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. Journal of Food Processing and Preservation, 43(1), e13850. https://doi.org/10.1111/jfpp.13850Hanganu, A., Todaşcă, M. C., Chira, N. A., Maganu, M., & Roşca, S. (2012). The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chemistry, 134(4), 2453-2458. https://doi.org/10.1016/j.foodchem.2012.04.048Hess, T., & Ross-Jones, T. (2014). Omega-3 fatty acid supplementation in horses. Revista Brasileira de Zootecnia, 43(12), 677-683. https://doi.org/10.1590/S1516-35982014001200008Hinchcliff, K. W., Kaneps, A. J., & Geor, R. J. (2013). Equine Sports Medicine and Surgery E-Book. Elsevier Health Sciences.Hussein, S., & Abdrabba, S. (2015). Physico-chemical characteristics, fatty acid, composition of grape seed oil and phenolic compounds of whole seeds, seeds and leaves of red grape in Libya. International Journal of Applied Science and Mathematics, 2(5), 2394-2894.Kentucky Equine Research. (2016). Nutrition of the performance horse.Kolláthová, R., Gálik, B., Halo, M., Kováčik, A., Hanušovský, O., Bíro, D., ... & Šimko, M. (2020). The effects of dried grape pomace supplementation on biochemical blood serum indicators and digestibility of nutrients in horses. Czech Journal of Animal Science, 65(2), 58-65. https://doi.org/10.17221/181/2019-CJASLichovnikova, M., Kalhotka, L., Adam, V., Klejdus, B., & Anderle, V. (2015). The effects of red grape pomace inclusion in grower diet on amino acid digestibility, intestinal microflora, and sera and liver antioxidant activity in broilers. Turkish Journal of Veterinary and Animal Sciences, 39(4), 406-412. https://doi.org/10.3906/vet-1403-64Mironeasa, S., Codină, G. G., & Mironeasa, C. (2016). The effects of wheat flour substitution with grape seed flour on the rheological parameters of the dough assessed by mixolab. Journal of Texture Studies, 43(1), 40–48. https://doi.org/10.1111/j.1745-4603.2011.00315.xNational Research Council. (2007). National Research Council Committee nutrient requirements of horses.Piccione, G., Arfuso, F., Fazio, F., Bazzano, M., & Giannetto, C. (2014a). Serum lipid modification related to exercise and polyunsaturated fatty acid supplementation in jumpers and thoroughbred horses. Journal of Equine Veterinary Science, 34(10), 1181-1187. https://doi.org/10.1016/j.jevs.2014.07.005Piccione, G., Marafioti, S., Giannetto, C., Panzera, M., & Fazio, F. (2014b). Effect of dietary supplementation with omega 3 on clotting time, fibrinogen concentration and platelet aggregation in the athletic horse. Livestock Science, 161, 109-113. https://doi.org/10.1016/j.livsci.2013.12.032Ribeiro, L. F., Ribani, R. H., Francisco, T. M. G., Soares, A. A., Pontarolo, R., & Haminiuk, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of Chromatography B, 1007, 72–80. https://doi.org/10.1016/j.jchromb.2015.11.005Ross-Jones, T., Hess, T., Rexford, J., Ahrens, N., Engle, T., & Hansen, D. K. (2014). Effects of omega-3 long chain polyunsaturated fatty acid supplementation on equine synovial fluid fatty acid composition and prostaglandin E2. Journal of Equine Veterinary Science, 34(6), 779-783. https://doi.org/10.1016/j.jevs.2014.01.014Vineyard, K. R., Warren, L. K., & Kivipelto, J. (2010). Effect of dietary omega-3 fatty acid source on plasma and red blood cell membrane composition and immune function in yearling horses. Journal of Animal Science, 88(1), 248-257. https://doi.org/10.2527/jas.2009-2253Viveros, A., Chamorro, S., Pizarro, M., Arija, I., Centeno, C., & Brenes, A. (2011). Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poultry Science, 90(3), 566-578. https://doi.org/10.3382/ps.2010-00889 

    Hematologický profil novonarodených prasiatok a prasníc kŕmených kŕmnou dávkou s obsahom hroznových výliskov

    Get PDF
    The aim of this study was to evaluate the effect of feeding pregnant sows with diet supplemented with dried grape pomace on hematological parameters of sows and new-born piglets. Sixteen pregnant crossbred sows Large white x Landrace mated with a Duroc boar, were randomly divided to two groups, control (C) and dried grape pomace (DGP) group. During last seven days of pregnancy the sow’s diet in DGP group contained 1% of DGP powder. Sows blood samples were taken before intake of diet containing DGP and during first day post partum. Blood of new-born piglets was taken immediately after birth before colostrum intake. All blood samples were analyzed on hematological parameters. After 7 days of treatment with DGP, sows blood showed significant changes in parameters such as total white blood cell count, lymphocytes count, mean corpuscular volume and mean corpuscular hemoglobin, but within the reference interval for pigs. Feeding pregnant sows with DGP affected the hematological parameters of the new-born piglets in a negative way. Compared to the C group, the new-born piglets in the DGP group had significantly lower lymphocyte counts, red blood cells, hemoglobin, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin values. Parameters of white and red blood cells are crucial for new-born piglets from an immunological and anemia point of view. Therefore, the addition of DGP during the last week of pregnancy to the sows’ diet cannot be recommended.Cieľom experimentu bolo vyhodnotiť vplyv skrmovania sušených hroznových výliskov prasnými prasnicami na hematologické parametre prasníc a ich novonarodených prasiatok. Šestnásť vysoko gravidných kríženiek plemien Biela ušľachtilá x Landrace, spárené s kancom Duroca, bolo náhodne rozdelených do dvoch skupín – kontrolnej (C) a skupiny s konzumáciou sušených hroznových výliskov (DGP). Počas posledných siedmich dní gravidity kŕmna dávka prasníc v skupine DGP obsahovala 1% prášku DGP. Vzorky krvi boli prasniciam odobraté pred prvým príjmom kŕmnej dávky obohatenej o DGP a počas prvého dňa po pôrode. Krv novorodených prasiatok bola odoberaná bezprostredne po narodení pred príjmom mledziva. Všetky vzorky krvi boli analyzované na hematologické parametre. Po 7 dňoch skrmovania DGP krv prasníc vykazovala významné zmeny v parametroch ako je celkový počet bielych krviniek, celkový počet lymfocytov, priemerný korpuskulárny objem a priemerný korpuskulárny hemoglobín. Parametre sa pohybovali v rámci referenčných intervalov pre ošípané. Skrmovanie DGP gravidným prasniciam negatívne ovplyvnilo hematologické parametre novorodencov. V porovnaní s kontrolnou skupinou mali novonarodené prasiatka z pokusnej skupiny signifikantne nižší počet lymfocytov, červených krviniek, hemoglobínu, hematokritu, priemerný korpuskulárny objem a priemerné hodnoty korpuskulárneho hemoglobínu. Pre novonarodené prasiatka sú parametre bielych a červených krviniek kľúčové z imunologického hľadiska a anémie. Pridanie DGP počas posledného týždňa gravidity do kŕmnej dávky prasníc preto nemožno odporučiť

    Bioactive compounds and fatty acid profile of grape pomace

    Get PDF
    Article Details: Received: 2020-07-23 | Accepted: 2020-08-04 | Available online: 2020-12-31https://doi.org/10.15414/afz.2020.23.04.230-235The aims of experiment were to determinate the values of bioactive compounds and fatty acid profile in white dried grape pomace Vitis vinifera “Pinot Gris”. Grape pomace originated from winery of the University farm Kolíňany, centre Oponice. The dry matter and crude fat content was determined after the preparation of samples. The dried grape pomace contained 94.2% of dry matter and 8.40% of crude fat. This research was conducted on antiradical activity (DPPH), total polyphenols, total phelinolic acids, total flavanoids and fatty acid profile. The results confirmed that the grape pomace is considerable source of bioactive compounds, with high antioxidant activity, value of total phenolic acids and total polyphenols. From fatty acids profile are grape pomace significant source of polyunsaturated fatty acids, mainly essential linoleic acid (68.62 g 100 g-1 of fatty acids). They are characterized by wide ratio of n6/n3 fatty acids.Keywords: grape by-product, fatty acid, bioactive compound, nutritionReferencesANTONIOLLI, A., FONTANA, A. R., PICCOLI, P. and BOTTINI, R. (2015). Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chemistry, 178, 172–178.BAYDAR, N. G., ÖZKAN, G. and YAŞAR, S. (2007). Evaluation of the antiradical and antioxidant potential of grape extracts. Food control, 18(9), 1131–1136.BELURY, M. A., COLE, R. M., SNOKE, D. B., BANH, T. and ANGELOTTI, A. (2018). Linoleic acid, glycemic control and Type 2 diabetes. Prostaglandins, Leukotrienes and Essential Fatty Acids, 132, 30–33.BRAGA, G. C., MELO, P. S., BERGAMASCHI, K. B., TIVERON, A. P., MASSARIOLI, A. P. and ALENCAR, S. M. D. (2016). Extraction yield, antioxidant activity and phenolics from grape, mango and peanut agro-industrial by-products. Ciência Rural, 46(8), 1498–1504.CAPCAROVÁ, M., KALAFOVÁ, A., SÍLEŠOVÁ, A., SCHNEIDGENOVÁ, M. and PETRUŠKA, P. (2017). The effect of quercetin on some hematological parameters of rabbits. Slovak society for agricultural, forestry, food and veterinary sciences at the slovak academy of sciences. Nitra: SUA in Nitra (pp. 23–35). In Slovak.EINBOND, L. S., REYNERTSON, K. A., LUO, X. D., BASILE, M. J. and KENNELLY, E. J. (2004). Anthocyanin antioxidants from edible fruits. Food chemistry, 84(1), 23–28.FAO, F. Agriculture Organization of the United Nations, 2010. Fats and fatty acids in human nutrition. Report of an expert consultation. Rome. consultado el, 30, 91.FARMAKOPEA Polska, V. tom V. PET Farm., Warszawa, 1999.FARVID, M. S., DING, M., PAN, A., SUN, Q., CHIUVE, S. E., STEFFEN, L. M. and HU, F. B. (2014). Dietary linoleic acid and risk of coronary heart disease: a systematic review and metaanalysis of prospective cohort studies. Circulation, 130(18), 1568–1578.HABÁNOVÁ, M., HOLOVIČOVÁ, M., GAŽAROVÁ, M., KOPČEKOVÁ, J. and MRÁZOVÁ, J. (2019). Content of selected bioactive substances in bilberries from various geographical areas. Scientific works of the Department of Crop Production. Nitra: SUA in Nitra (pp. 50–57). In Slovak.CHAMORRO, S., VIVEROS, A., ALVAREZ, I., VEGA, E. and BRENES, A. (2012). Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chemistry, 133(2), 308–314.CHEDEA, V. S., PELMUS, R. S., LAZAR, C., PISTOL, G. C., CALIN, L. G., TOMA, S. M. and TARANU, I. (2017). Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. Journal of the Science of Food and Agriculture, 97(8), 2516–2523.IORA, S. R., MACIEL, G. M., ZIELINSKI, A. A., DA SILVA, M. V., PONTES, P. V. D. A., HAMINIUK, C. W. and GRANATO, D. (2015). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50(1), 62–69.ISHIDA, K., KISHI, Y., OISHI, K., HIROOKA, H. and KUMAGAI, H. (2015). Effects of feeding polyphenol‐rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers. Animal Science Journal, 86(3), 260–269.IVANIŠOVÁ, E., KÁNTOR, A. and KAČÁNIOVÁ, M. (2019). Antioxidant Activity and Total Polyphenol Content of Different Varieties of Grape from the Small Carpathians Wine Region of Slovakia. Scientific Papers: Animal Science & Biotechnologies/ Lucrari Stiintifice: Zootehnie si Biotehnologii, 52(2).IVANKO, Š. (2012). Actual questions to solve deficiencies of omega-3 polyunsaturated fatty acids in animal and human nutrition. Lazar days of nutrition and veterinary ditetics X. Košice: UVMP in Košice (pp. 115–121). In Slovak.JURÁČEK, M., BÍRO, D., ŠIMKO, M., GÁLIK, B., ROLINEC, M., HANUŠOVSKÝ, O. and BARANTAL, S. (2019). Fermentation quality and dry matter losses of grape pomace silages with urea addition. Agriculture & Food, 7,173–178.JURÍKOVÁ, T., FATRCOVÁ-ŠRAMKOVÁ, K. and SCHWARZOVÁ, M. (2019). Lesser known fruit as a source of valuable bioactive substances. Agrobiodiversity for improve the nutrition, health and quality of human and bees life. Nitra: SUA in Nitra (p. 94).KOLLÁTHOVÁ, R., HANUŠOVSKÝ, O., GÁLIK, B., BÍRO, D., ŠIMKO, M., JURÁČEK, M. and GIERUS, M. (2020). Fatty acid profile analysis of grape by-products from Slovakia and Austria. Acta Fytotechnica et Zootechnica, 23(2).LAVEE, S. (2000). Grapevine (Vitis vinifera) growth and performance in warm climates. In Temperate Fruit Crops in Warm Climates (pp. 343–366). Springer, Dordrecht.LENIGHAN, Y. M., McNULTY, B. A. and ROCHE, H. M. (2019, May). Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. The Proceedings of the Nutrition Society, 78(2), 234–245). LI, K., BRENNAN, L.,BLOOMFIELD, J. F., DUFF, D. J., MCNULTY, B. A., FLYNN, A. and NUGENT, A. P. (2018). Adiposity associated plasma linoleic acid is related to demographic, metabolic health and haplotypes of FADS1/2 genes in Irish adults. Molecular nutrition & food research, 62(7), 1700785.LIBRÁN CUERVAS-MONS, C. M., MAYOR LÓPEZ, L., GARCÍA CASTELLÓ, E. M. and VIDAL BROTONS, D. J. (2013). Polyphenol extraction from grape wastes: Solvent and pH effect. Agricultural Sciences, 4(9B), 56–62.MANCA, M. L., MARONGIU, F., CASTANGIA, I., CATALÁNLATORRE, A., CADDEO, C., BACCHETTA, G. and MANCONI, M. (2016). Protective effect of grape extract phospholipid vesicles against oxidative stress skin damages. Industrial Crops and Products, 83, 561–567.MICHALCOVA, K., ROYCHOUDHURY, S., HALENAR, M., TVRDA, E., KOVACIKOVA, E., VASICEK, J. and KOLESAROVA, A. (2019). In vitro response of human ovarian cancer cells to dietary bioflavonoid isoquercitrin. Journal of Environmental Science and Health, Part B, 54(9), 752–757.OZDEMIR, G., KITIR, N., TURAN, M. and OZLU, E. (2018). Impacts of organic and organo-mineral fertilizers on total phenolic, flavonoid, anthocyanin and antiradical activity of okuzgozu (Vitis vinifera L.) grapes. Acta Scientiarum Polonorum Hortorum Cultus, 17(3), 91–100.PARRY, J. HAIWEN, L., JIA-REN, L., KEQUAN, Z., LEI, Z. and SHUXIN, R. (2011). Antioxidant activity, antiproliferation of colon cancer cells, and chemical composition of grape pomace. Food and Nutrition Sciences, 2011.PASTRANA-BONILLA, E., AKOH, C. C., SELLAPPAN, S. and KREWER, G. (2003). Phenolic content and antioxidant capacity of muscadine grapes. Journal of agricultural and food chemistry, 51(18), 5497–5503.PINTAĆ, D., MAJKIĆ, T., TOROVIĆ, L., ORČIĆ, D., BEARA, I., SIMIN, N. and LESJAK, M. (2018). Solvent selection for efficient extraction of bioactive compounds from grape pomace. Industrial Crops and Products, 111, 379–390.POUDEL, P. R., TAMURA, H., KATAOKA, I. and MOCHIOKA, R. (2008). Phenolic compounds and antioxidant activities of skins and seeds of five wild grapes and two hybrids native to Japan. Journal of Food Composition and Analysis, 21(8), 622–625.RIBEIRO, L. F., RIBANI, R. H., FRANCISCO, T. M. G., SOARES, A. A., PONTAROLO, R. and HAMINIUK, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of chromatography B, 1007, 72–80.ROCKENBACH, I. I., RODRIGUES, E., GONZAGA, L. V., CALIARI, V., GENOVESE, M. I., GONÇALVES, A. E. D. S. S. and FETT, R. (2011). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127(1), 174–179.RODRÍGUEZ-MORGADO, B., CANDIRACCI, M., SANTAMARÍA, C., REVILLA, E., GORDILLO, B., PARRADO, J. and CASTAÑO, A. (2015). Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties. Plant foods for human nutrition, 70(1), 42–49.RUBERTO, G., RENDA, A., DAQUINO, C., AMICO, V., SPATAFORA, C., TRINGALI, C. and De TOMMASI, N. (2007). Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chemistry, 100(1), 203–210.SÁNCHEZ‐MORENO, C., LARRAURI, J. A. and SAURA‐ CALIXTO, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276.SINGLETON, V. L. and ROSSI, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144–158.SOARES, S. E. (2002). Ácidos fenólicos como antioxidantes. Revista de nutrição, 15(1), 71–81. SPIGNO, G., TRAMELLI, L. and De FAVERI, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of food engineering, 81(1), 200–208.VATAI, T., ŠKERGET, M. and KNEZ, Ž. (2009). Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. Journal of Food Engineering, 90(2), 246–254.VAUZOUR, D., RODRIGUEZ-MATEOS, A., CORONA, G., ORUNA-CONCHA, M. J. and SPENCER, J. P. (2010). Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2(11), 1106–1131.WILLETT, W. C. (2002). Balancing life-style and genomics research for disease prevention. Science, 296(5568), 695–698.WU, J. H., LEMAITRE, R. N., KING, I. B., SONG, X., PSATY, B. M., SISCOVICK, D. S. and MOZAFFARIAN, D. (2014). Circulating omega-6 polyunsaturated fatty acids and total and causespecific mortality: the Cardiovascular Health Study. Circulation, 130(15), 1245–1253.XU, C., YAGIZ, Y., BOREJSZA-WYSOCKI, W., LU, J., GU, L., RAMÍREZ-RODRIGUES, M. M. and MARSHALL, M. R. (2014). Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds. Food chemistry, 157, 20–29.YI, C., SHI, J., KRAMER, J., XUE, S., JIANG, Y., ZHANG, M. and POHORLY, J. (2009). Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chemistry, 114(2), 570–576

    Vplyv aditív na mykotoxickú kontamináciu kukuričných siláží

    Get PDF
    Addition of silage additives is commonly concentrated on the improvement of nutritive and fermentative features of silages, but in recent years, mycotoxic contamination is also a feature monitored after the treatment. This study aimed to evaluate the effect of silage additives, in the concrete inoculant consisting of a mixture of Lactobacillus buchneri LN40177, Lactobacillus casei LC329090 and urea, on the concentration of major mycotoxins in maize silages. The ensilage mass was made in three variants, which consisted of maize silage (control variant C), maize silage with the addition of a commercial inoculant (variant A) and maize silage with the addition of urea (variant U). The commercial inoculant was added to the cut mass at a dose of 1 g/t of mass and urea at a dose of 5 kg/t of mass. After application of silage additives, the mass was stored and sealed in silage units. Mycotoxin analysis was performed using Veratox tests with ELISA reader, whereas average samples were prepared according to established protocols. The immuno-enzymatic method revealed that all samples of maize silage showed 100% contamination. The maize silages were characterized by the highest concentration of deoxynivalenol regardless of the treatment. The results confirmed the effect of silage additives on mycotoxic contamination of maize silages. Compared to the control variant, the commercial inoculant had negative increasing effect (P<0.05) on deoxynivalenol, ochratoxins and zearalenone, and a positive decreasing effect (P<0.05) on T-2 toxin and fumonisins. The urea addition resulted in significant reduction of T-2 toxin and increase of zearalenone.Prídavkom silážnych aditív sa bežne sleduje zlepšenie nutričných a fermentačných vlastností siláží, ale v posledných rokoch je mykotoxická kontaminácia tiež sledovaným znakom po ošetrení. Táto štúdia bola zameraná na vyhodnotenie účinku silážnych aditív, konkrétne inokulantu pozostávajúceho zo zmesi Lactobacillus buchneri LN40177, Lactobacillus casei LC329090 a močoviny, na koncentráciu hlavných mykotoxínov v kukuričnej siláži. Silážovaná hmota kukurice bola vyhotovená v troch variantoch, ktoré pozostávali z kukuričnej siláže (kontrolný variant C), kukuričnej siláže s prídavkom komerčného inokulantu (variant A) a kukuričnej siláže s prídavkom močoviny (variant U). Komerčný inokulant bol do narezanej hmoty pridaný v dávke 1g/t silážnej hmoty a močovina v dávke 5 kg/t silážnej hmoty. Po aplikácií silážnych aditív sa hmota uskladnila a zasilážovala do silážnych jednotiek. Analýza mykotoxínov bola vykonaná pomocou Veratox testov na ELISA reader, pričom priemerné vzorky boli upravené podľa stanovených protokolov. Výsledky potvrdili efekt silážnych aditív na mykotoxickú kontamináciu kukuričných siláží. V porovnaní s kontrolným variantom mal komerčný inokulant negatívny stúpajúci efekt (P<0,05) na deoxynivalenol, ochratoxíny a zearalenon, a pozitívny klesajúci efekt (P<0,05) na T-2 toxín a fumonizíny. Výsledkom pridania močoviny bolo preukazné zníženie T-2 toxínu a zvýšenie zearalenonu

    Fatty acid profile analysis of grape by-products from Slovakia and Austria

    Get PDF
    Article Details: Received: 2020-02-05 | Accepted: 2020-03-16 | Available online: 2020-06-30https://doi.org/10.15414/afz.2020.23.02.78-84The objective of the present study was to determine the fatty acid profile of grape pomace, grape stem and grape bunch of three different cultivars of Vitis vinifera sp. (Green Veltliner, Pinot Blanc and Zweigelt) from two countries as a possible sources for animal nutrition. Fatty acid profile analysis was performed using the Agilent 6890 A GC machine. Significant differences (P <0.05) in fatty acid content of analyzed samples were detected between the countries, as well as between the cultivars within countries. Grape pomaces and grape bunches were rich in polyunsaturated fatty acids (70.91–71.86%), represented mainly by linoleic acid (69.79–70.32%), and low in saturated fatty acids (12.42–12.96%). Grape stems were characterized by a high saturated fatty acids content (24.46–30.85%), but on the other hand, these samples had the highest α-linolec acid concentration (9.98–14.52%). Oleic acid (12.24–15.17%) was the most abundant from monounsaturated fatty acids (12.69–15.33%) in all the analyzed samples. These results indicate a strong impact of the grape variety and location on the fatty acid profile of grape by-products and their potential to be evaluated as feed additives with high polyunsaturated fatty acids concentration in animal nutrition.Keywords: grape pomace, grape stalk, fatty acids, PUFA, SFAReferencesBEKHIT, A. et al. (2015). Technological Aspects of By-Product Utilization. Valorization of Wine Making By-Products, 117–198. DOI: https://doi.org/10.1201/b19423-5BENNEMANN, G. D. et al. (2016). Mineral analysis, anthocyanins and phenolic compounds in wine residues flour. In BIO Web of Conferences, 7, p. 04007.BOTELLA, C. et al. (2005). Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochemical Engineering Journal, 26(2–3), 100–106. DOI: https://doi.org/10.1016/j.bej.2005.04.020CHAMORRO, S. et al. (2015). Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Research International, 73, 197– 203. DOI: https://doi.org/10.1016/j.foodres.2014.11.054CHEDEA, V. et al. (2018). Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols. Nutrients, 10(5), 588. DOI: https://doi.org/10.3390/nu10050588DOMÍNGUEZ, J., MARTÍNEZ-CORDEIRO, H. and LORES, M. (2016). Earthworms and Grape Marc: Simultaneous Production of a High-Quality Biofertilizer and Bioactive-Rich Seeds. Grape and Wine Biotechnology. DOI: https://doi.org/10.5772/64751FERNANDES, L. et al. (2013). Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Research International, 50(1), 161– 166. DOI: https://doi.org/10.1016/j.foodres.2012.09.039FONTANA, A. R., ANTONIOLLI, A. and BOTTINI, R. (2013). Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. Journal of Agricultural and Food Chemistry, 61(38), 8987–9003. DOI: https://doi.org/10.1021/jf402586fGARCÍA-LOMILLO, J. and GONZÁLEZ-SANJOSÉ, M. L. (2017). Applications of Wine Pomace in the Food Industry: Approaches and Functions. Comprehensive Reviews in Food Science and Food Safety, 16(1), 3–22. DOI: https://doi.org/10.1111/1541-4337.12238GUERRA-RIVAS, C. et al. (2016). Effects of grape pomace in growing lamb diets compared with vitamin E and grape seed extract on meat shelf life. Meat science, 116, 221–229.GÜLCÜ, M. et al. (2019). The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. Journal of Food Processing and Preservation, 43(1), e13850. DOI: https://doi.org/10.1111/jfpp.13850GÜL, H. et al. (2013). Antioxidant activity, total phenolics and some chemical properties of Öküzgözü and Narince grape pomace and grape seed flour. Journal of Food, Agriculture & Environment, 11(2), 28–34.HUSSEIN, S. and ABDRABBA, S. (2015). Physico-chemical characteristics, fatty acid, composition of grape seed oil and phenolic compounds of whole seeds, seeds and leaves of red grape in Libya. International Journal of Applied Science and Mathematics, 2(5), 2394–2894.KAFANTARIS, I. et al. (2018). Effects of Dietary Grape Pomace Supplementation on Performance, Carcass Traits and Meat Quality of Lambs. In Vivo, 32(4), 807–812. DOI: https://doi.org/10.21873/invivo.11311KERASIOTI, E. et al. (2017). Tissue specific effects of feeds supplemented with grape pomace or olive oil mill wastewater  on detoxification enzymes in sheep. Toxicology Reports, 4, 364–372. DOI: https://doi.org/10.1016/j.toxrep.2017.06.007MAKRIS, D. P. et al. (2007). Characterisation of certain major polyphenolic antioxidants in grape (Vitis vinifera cv. Roditis) stems by liquid chromatography-mass spectrometry. European Food Research and Technology, 226(5), 1075–1079. DOI: https://doi.org/10.1007/s00217-007-0633-9MIRONEASA, S., Codină, G. G. and MIRONEASA, C. (2016). the effects of wheat flour substitution with grape seed flour on the rheological parameters of the dough assessed by mixolab. Journal of Texture Studies, 43(1), 40–48. DOI: https://doi.org/10.1111/j.1745-4603.2011.00315.xELEONORA, N. et al. (2014). Grape pomace in sheep and dairy cows feeding. Journal of Horticulture, Forestry and Biotechnology, 18(2), 146–150.OVCHAROVA, T., ZLATANOV, M. and DIMITROVA, R. (2016). Chemical composition of seeds of four Bulgarian grape varieties. Ciência e Técnica Vitivinícola, 31(1), 31–40. DOI: https://doi.org/10.1051/ctv/20163101031RIBEIRO, L. F. et al. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of Chromatography B, 1007, 72–80. DOI: https://doi. org/10.1016/j.jchromb.2015.11.005RONDEAU, P. et al. (2013). Compositions and chemical variability of grape pomaces from French vineyard. Industrial Crops and Products, 43, 251–254. DOI: https://doi.org/10.1016/j.indcrop.2012.06.053RUSSO, V. M. et al. (2017). In vitro evaluation of the methane mitigation potential of a range of grape marc products. Animal Production Science, 57(7), 1437. DOI: https://doi.org/10.1071/an16495SOUQUET, J.-M. et al. (2000). Phenolic Composition of Grape Stems. Journal of Agricultural and Food Chemistry, 48(4), 1076–1080. DOI: https://doi.org/10.1021/jf991171uTANGOLAR, S. G. et al. (2009). Evaluation of fatty acid profiles  and mineral content of grape seed oil of some grape  genotypes. International Journal of Food Sciences and Nutrition, 60(1), 32–39.  DOI: https://doi.org/10.1080/09637480701581551TEIXEIRA, A. et al. (2014). Natural bioactive compounds from winery by-products as health promoters: a review. International journal of molecular sciences, 15(9), 15638–15678.TSIPLAKOU, E. and ZERVAS, G. (2008). The effect of dietary inclusion of olive tree leaves and grape marc on the content of  conjugated linoleic acid and vaccenic acid in the milk of dairy  sheep and goats. Journal of Dairy Research, 75(3), 270– 278. DOI: https://doi.org/10.1017/s0022029908003270VIVEROS, A. et al. (2011). Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poultry Science, 90(3), 566–578. DOI: https://doi.org/10.3382/ps.2010-00889YI, C. et al. (2009). Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chemistry, 114(2), 570–576. DOI: https://doi.org/10.1016/j.foodchem.2008.09.103YOUSEFI, M. O. R. V. A. R. I. D., NATEGHI, L. E. I. L. A. and GHOLAMIAN, M. (2013). Physico-chemical properties of two types of shahrodi grape seed oil (Lal and Khalili). European Journal of Experimental Biology, 3(5), 115–118.YU, J. and AHMEDNA, M. (2012). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology, 48(2), 221–237. DOI: https://doi.org/10.1111/j.1365-2621.2012.03197.

    The effect of different feeding system on fatty acids composition of cowĘźs milk

    Get PDF
    Article Details: Received: 2020-01-16 | Accepted: 2020-01-22 | Available online: 2020-03-31https://doi.org/10.15414/afz.2020.23.01.37-41The aim of the experiment was study the effect of different feeding system on fatty acids (FA) profile of cow’s milk. The tank’s samples from two farms were collected. On these farms breed: the Slovak Spotted cattle was reared. Feeding system was realized on the base pasture + supplementary feeding without silage – grazing feeding system (farm A) and silage feeding system (farm B). The FA profile in the milk samples with the apparatus (Agilent 6890A GC, Agilent technologies, USA) were analysed. Feeding system affects FA profile of cow’s milk. Significantly higher proportion of FA in milk samples: C4:0, C17:0, C18:1 cis-n9, C18:2 cis-n9, C18:3-n3 and C20:0 in milk from grazing feeding system (farm A) was detected. The samples of milk only from this feeding system contained C20:5 n3. Significantly higher content of 18:2 cis n6 and presence of C13:0, C20:3 n6 and C20:4 n6 only in milk samples from silage feeding system were determined. Significantly lower proportion of saturated FA was typical for milk from farm A and significantly higher proportion of polyunsaturated FA was characteristic for the samples from farm B. The influence of the feeding system on the monounsaturated FA content was not confirmed. In milk samples from both feeding systems very different n6/n3 FA ratio was detected, with lower value for milk from grazing feeding system (1.36 vs. 9.12).Keywords: dairy cattle, milk, fatty acids, feeding systemReferencesAlothman , M. et al. (2019). The “grass-fed” milk story: understanding the impact of pasture feeding on the composition and quality of bovine milk. Foods, 8(8), 350.Bagnicka , E. et al. (2010). Expression and polymorphism of defensins in farm animals. Acta Biochimica Polonica, 57(4), 487–497.Barca , J. et al. (2018). Milk fatty acid profile from cows fed with mixed rations and different access time to pastureland during early lactation. Journal of Animal Physiology and Animal Nutrition, 102(3), 620–629.Blaško , J. et al. (2010). Fatty acid composition of summer and winter cows’ milk and butter. Journal of Food and Nutrition Research, 49(4), 169–177.Boro , P. et al. (2016). Genetic and non-genetic factors affecting milk composition in dairy cows. International Journal of Advanced Biological Research, 6(2), 170–174.BSSR. (2017). The breeding services of the Slovak republic, s.e. The results of dairy herd milk recording in Slovak republic year 2017. Retrieved January 7, 2020 from http://test.plis.sk/volne/RocenkaMagazin/Rocenka.aspx?id=mlhd2017/BSSR. (2018). Breeding services of the Slovak Republic, s.e. The results of dairy herd milk recording in Slovak Republic foryear 2018. Retrieved January 7, 2020 from http://test.plis.sk/volne/rocenkamagazin/rocenka.aspx?id=mlhd2018/Bujko , J. et al. (2018). The impact of genetic and nongenetic factors on somatic cell count as a monitor of udder health in Slovak Simmental dairy cows. Acta fytotechnica et zootechnica, 21(4), 166–168. https://doi.org/10.15414/afz.2018.21.04.166-168D’urso, S. et al. (2008). Influence of pasture on fatty acid profile of goat milk. Journal of Animal Physiology and Animal Nutrition, 92(3), 405–410.Elgersma , A. (2015). Grazing increases the unsaturated fatty acid concentration of milk from grass‐fed cows: A review of the contributing factors, challenges and future perspectives.European Journal of Lipid Science and Technology, 117(9), 1345–1369.Filipejová, T. et al. (2010). Evaluation of selected biochemical milk parameters of dairy cows and their correlations. Potravinárstvo, 4, 12–15.Gálik, B. et al. (2011). Biotechnology and animal food quality. Nitra: Slovak University of Agriculture in Nitra.Guler, G. O. et al. (2010). Fatty acid composition and conjugated linoleic acid (CLA) content of some commercial milk in Turkey. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 16(Supplement-A), 37–40.Haug , A., Høstmark , A. T. and Harstad , O. M. (2007). Bovine milk in human nutrition – a review. Lipids in health and disease, 6(25), 1–16.Hudečková P. et al. (2011). Plants oil in the diet for laying hens. In Strakov á, E. and Suchý, P. (eds.): 9th Kabrt’s dietetic days. Brno: Tribun EU, 144–147. In Czech.Kadlečík, O. et al. (2013). Diversity of cattle breeds in Slovakia. Slovak Journal of Animal Science, 46(4), 145–150.Kajaba , I. et al. (2009). Role of milk and dairy products in prevention of cardiovascular distribution. In Fatrcová Šramková, K. (eds.): Zobor day and West Slovakia days about osteoporosis 2009. Nitra: SUA in Nitra, 70–77. In Slovak.Kalač, P. and Samkov á, E. (2010). The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science, 55(12), 521–537.Kubicová, Ľ. and Habánová, M. (2012). Development of milk consumption and marketing analysis of its demand. Potravinarstvo Slovak Journal of Food Sciences, 6(4), 66–72.Lorková, M. et al. (2017). Consumption of milk and dairy products in patients with cardiovascular disease. In Gálik, B. and Zelinkov á, G. (eds.): Proceedings of Slovak community for agricultural, forestry, food and veterinary sciences. Nitra: SUA in Nitra, 98–107. In Slovak.Lindmark-Månsson, H. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research, 2008, 52.Markiewicz-Kęszycka , M. et al. (2013). Fatty acid profile of milk-a review. Bulletin of the Veterinary Institute in Pulawy, 57(2), 135–139.Martin , B. et al. (2002). Variabilité de la teneur des laits en constituants d‘intérêt nutritionnel selon la nature des fourrages consommés par les vaches laitières. Rencontres Recherche Ruminants, 9, 347–350.Martin , B. et al. (2004). Effects of grass-based diets on the content of micronutrients and fatty acids in bovine and caprine dairy products. In Lúscher, A. et al. (eds.): Land use systems in grassland dominated regions. Proceedings of the 20th general meeting of the European grassland federation, Zurich: Hochschulverlag AG an der ETH, 876–886.Mendoza, A., Cajarville , C. and Repetto , J. L. (2016). Intake, milk production, and milk fatty acid profile of dairy cows fed diets combining fresh forage with a total mixed ration. Journal of Dairy Science, 99(3), 1938–1944.Miluchová, M., Gábor, M. and Trakovick á, A. (2014). Analysis of genetic structure in Slovak Pinzgau cattle using five candidate genes related to milk production traits. Genetika, 46(3), 863–875.Morales -Almaráz, E. et al. (2017). Parity and grazingtime effects on milk fatty acid profile in dairy cows. Animal Production Science, 58(7), 1233–1238.Muehlhoff, E., Bennett , A. and McMahon, D. (2013). Milk and dairy products in human nutrition. Rome: Food and Agriculture Organization of the United Nations (FAO).O’Callaghan , T. F. et al. (2016). Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. Journal of Dairy Science, 99(12), 9424–9440.Regal, V. (1956). Microscopic method for evaluating feed quality. In Proceedings ČSAZV, Plant production, 6, 31 – 40. (in Czech).Rolinec, M. et al. (2018). Change of feeding affects fatty acids profile of goat’s milk. Journal of Central European Agriculture, 19(4), 883–889.Szwajkowska , M. et al. (2011). Bovine milk proteins asthe source of bioactive peptides influencing the consumers’ immune system–a review. Animal Science Papers and Reports, 29(4), 269–280.

    GRAPE BY-PRODUCTS AS BIOACTIVE SUBSTANCES IN ANIMAL NUTRITION: A REVIEW

    No full text
    Modern animal nutrition and feeding is oriented in feed additives right now. There are many different groups and categories of feed additives like probiotics, prebiotics, acidifiers, as well as enzymes. Except those groups, there are some by-products from the agricultural industry with potential to be feed additives. In this way, agricultural production should be more environmental. In the World, there is a grape production over 60 million tons per year. From this production, there are more than 9 million tons of by-products, mainly as pomace and stalk. Many studies published in the World shows, those grape by-products are sources of organic nutrients, minerals, as well as different bioactive substances with beneficial effect on animal organisms. Grape pomace is rich in many nutrients content like crude protein, amino acids, crude fat, essential polyunsaturated fatty acids, crude fibre, NDF, ADF or minerals, like calcium (Ca), potassium (K) or copper (Cu). Dry matter and organic matter digestibility ranged between 50 and 80 %. On other hand, pomaces good sources of fenolic acids, resveratrol, lignans or flavonols (quercetin), flavons, flavanols, izoflavons, antocyanins and others. As many reports shows, grape by-products stimulate feed intake, body weight, daily gain, as well as feed conversion ratio in ruminants nutrition. In non-ruminants nutrition, by-products from grapes processing have positive effect on growth performance, total apparent digestibility and potentially in meat quality. However, on the base of many published reports, grape by-products haven´t negative effect on health status of animals. Grape pomace bioactive substances have a potential for use in animal nutrition as feed additives with strong stimulative and protective effects. With bioactive substances can grape pomace help to better nutrients utilization from feed rations. As some studies shows, organic matter digestibility of grape pomace in very close to the hay. Adequate feeding of pomaces haven´t negative effect on animal metabolism through blood serum biochemical indicators
    corecore