3,833 research outputs found
Superfluid gap formation in a fermionic optical lattice with spin imbalanced populations
We investigate the attractive Hubbard model in infinite spatial dimensions at
quarter filling. By combining dynamical mean-field theory with continuous-time
quantum Monte Carlo simulations in the Nambu formalism, we directly deal with
the superfluid phase in the population imbalanced system. We discuss the low
energy properties in the polarized superfluid state and the pseudogap behavior
in the vicinity of the critical temperature.Comment: 4 pages, 1 figure, To appear in J. Phys.: Conf. Ser. for SCES201
Competition between Spin-Orbit Interaction and Zeeman Coupling in Rashba 2DEGs
We investigate systematically how the interplay between Rashba spin-orbit
interaction and Zeeman coupling affects the electron transport and the spin
dynamics in InGaAs-based 2D electron gases. From the quantitative analysis of
the magnetoconductance, measured in the presence of an in-plane magnetic field,
we conclude that this interplay results in a spin-induced breaking of time
reversal symmetry and in an enhancement of the spin relaxation time. Both
effects, due to a partial alignment of the electron spin along the applied
magnetic field, are found to be in excellent agreement with recent theoretical
predictions.Comment: 4 figures and 4 page
On the thermodynamic stability and structural transition of clathrate hydrates
Gas mixtures of methane and ethane form structure II clathrate hydrates despite the fact that each of pure methane and pure ethane gases forms the structure I hydrate. Optimization of the interaction potential parameters for methane and ethane is attempted so as to reproduce the dissociation pressures of each simple hydrate containing either methane or ethane alone. An account for the structural transitions between type I and type II hydrates upon changing the mole fraction of the gas mixture is given on the basis of the van der Waals and Platteeuw theory with these optimized potentials. Cage occupancies of the two kinds of hydrates are also calculated as functions of the mole fraction at the dissociation pressure and at a fixed pressure well above the dissociation pressure
Use of Combined Hartree-Fock-Roothaan Theory in Evaluation of Lowest States of K [Ar]4s^0 3d^1 and Cr+ [Ar]4s^0 3d^5 Isoelectronic Series Over Noninteger n-Slater Type Orbitals
By the use of integer and noninteger n-Slater Type Orbitals in combined
Hartree-Fock-Roothaan method, self consistent field calculations of orbital and
lowest states energies have been performed for the isoelectronic series of open
shell systems K [Ar]4s^0 3d^1 2(D) (Z=19-30) and Cr+ [Ar] 4s^0 3d^5 6(S)
(Z=24-30). The results of calculations for the orbital and total energies
obtained from the use of minimal basis sets of integer- and noninteger n-Slater
Type Orbitals are given in tables. The results are compared with the
extended-basis Hartree-Fock computations. The orbital and total energies are in
good agreement with those presented in the literature. The results are
accurately and considerably can be useful in the application of
non-relativistic and relativistic combined Hartree-Fock-Roothaan approach for
heavy atomic systems.Comment: 11 pages, 6 tables, 2 figures. submitte
Spin-orbit induced interference in polygon-structures
We investigate the spin-orbit induced spin-interference pattern of ballistic
electrons travelling along any regular polygon. It is found that the
spin-interference depends strongly on the Rashba and Dresselhaus spin-orbit
constants as well as on the sidelength and alignment of the polygon. We derive
the analytical formulae for the limiting cases of either zero Dresselhaus or
zero Rashba spin-orbit coupling, including the result obtained for a circle. We
calculate the nonzero Dresselhaus and Rashba case numerically for the square,
triangle, hexagon, and circle and discuss the observability of the
spin-interference which can potentially be used to measure the Rashba and
Dresselhaus coefficients.Comment: 17 pages, 4 figure
Phase diagram of orbital-selective Mott transitions at finite temperatures
Mott transitions in the two-orbital Hubbard model with different bandwidths
are investigated at finite temperatures. By means of the self-energy functional
approach, we discuss the stability of the intermediate phase with one orbital
localized and the other itinerant, which is caused by the orbital-selective
Mott transition (OSMT). It is shown that the OSMT realizes two different
coexistence regions at finite temperatures in accordance with the recent
results of Liebsch. We further find that the particularly interesting behavior
emerges around the special condition and J=0, which includes a new type
of the coexistence region with three distinct states. By systematically
changing the Hund coupling, we establish the global phase diagram to elucidate
the key role played by the Hund coupling on the Mott transitions.Comment: 4 pages, 6 figure
Statistical significance of fine structure in the frequency spectrum of Aharonov-Bohm conductance oscillations
We discuss a statistical analysis of Aharonov-Bohm conductance oscillations
measured in a two-dimensional ring, in the presence of Rashba spin-orbit
interaction. Measurements performed at different values of gate voltage are
used to calculate the ensemble-averaged modulus of the Fourier spectrum and, at
each frequency, the standard deviation associated to the average. This allows
us to prove the statistical significance of a splitting that we observe in the
h/e peak of the averaged spectrum. Our work illustrates in detail the role of
sample specific effects on the frequency spectrum of Aharonov-Bohm conductance
oscillations and it demonstrates how fine structures of a different physical
origin can be discriminated from sample specific features.Comment: accepted for publication in PR
High Voltage CMOS Control Interface for Astronomy - Grade Charged Coupled Devices
The Pan-STARRS telescope consists of an array of smaller mirrors viewed by a
Gigapixel arrays of CCDs. These focal planes employ Orthogonal Transfer CCDs
(OTCCDs) to allow on-chip image stabilization. Each OTCCD has advanced logic
features that are controlled externally. A CMOS Interface Device for High
Voltage has been developed to provide the appropiate voltage signal levels from
a readout and control system designated STARGRASP. OTCCD chip output levels
range from -3.3V to 16.7V, with two different output drive strenghts required
depending on load capacitance (50pF and 1000pF), with 24mA of drive and a rise
time on the order of 100ns. Additional testing ADC structures have been
included in this chip to evaluate future functional additions for a next
version of the chip.Comment: 13 pages, 17 gigure
Universal properties from local geometric structure of Killing horizon
We consider universal properties that arise from a local geometric structure
of a Killing horizon. We first introduce a non-perturbative definition of such
a local geometric structure, which we call an asymptotic Killing horizon. It is
shown that infinitely many asymptotic Killing horizons reside on a common null
hypersurface, once there exists one asymptotic Killing horizon. The
acceleration of the orbits of the vector that generates an asymptotic Killing
horizon is then considered. We show that there exists the
or sub-algebra on an asymptotic Killing horizon
universally, which is picked out naturally based on the behavior of the
acceleration. We also argue that the discrepancy between string theory and the
Euclidean approach in the entropy of an extreme black hole may be resolved, if
the microscopic states responsible for black hole thermodynamics are connected
with asymptotic Killing horizons.Comment: 14 pages, v2. minor correction
First-order quantum phase transition in the orthogonal-dimer spin chain
We investigate the low-energy properties of the orthogonal-dimer spin chain
characterized by a frustrated dimer-plaquette structure. When the competing
antiferromagnetic couplings are varied, the first-order quantum phase
transition occurs between the dimer and the plaquette phases, which is
accompanied by nontrivial features due to frustration: besides the
discontinuity in the lowest excitation gap at the transition point, a sharp
level-crossing occurs for the spectrum in the plaquette phase. We further
reveal that the plateau in the magnetization curve at 1/4 of the full moment
dramatically changes its character in the vicinity of the critical point. It is
argued that the first-order phase transition in this system captures some
essential properties found in the two-dimensional orthogonal-dimer model
proposed for .Comment: 7 pages, submitted to Phys. Rev.
- …