719 research outputs found

    Confirmation of bean leaf beetle, Cerotoma trifurcata, feeding on cucurbits

    Get PDF
    The objective of these studies was to assess the degree to which bean leaf beetle, Cerotoma trifurcata (Forster), will feed on cucurbits. In 2003, we documented an infestation of C. trifurcata in a commercial pumpkin field near Rosemount, MN, USA. To evaluate C. trifurcata feeding on cucurbits, we conducted laboratory no-choice and choice test feeding studies. In the laboratory, C. trifurcata fed most heavily on cotyledon-stage cucumber plants, followed by pumpkin and squash. With soybean plants present, C. trifurcata still fed on cucumber plants. However, C. trifurcata appeared to prefer soybeans until the quality of the soybean plants was diminished through feeding damage. This is the first known report of C. trifurcata feeding on cucurbits. The pest potential of C. trifurcata in cucurbit cropping systems should be further evaluated

    High power 946nm Nd:YAG laser, longitudinally-pumped by a diode bar

    No full text
    We report efficient quasi-three-level operation of a Nd:YAG laser at 946nm pumped by a 20W diode bar. An output power of ~2.6W has been obtained for 14.4W of incident pump power

    Three Flavor QCD at High Temperatures

    Full text link
    We have continued our study of the phase diagram of high temperature QCD with three flavors of improved staggered quarks. We are performing simulations with three degenerate quarks with masses less than or equal to the strange quark mass m_s and with degenerate up and down quarks with masses m_{u,d} less than the strange quark mass. For the quark masses studied to date, we find a crossover that strengthens as m_{u,d} decreases, rather than a bona fide phase transition. We present new results for the crossover temperature extrapolated to the physical value of m_{u,d}, and for quark number susceptibilities.Comment: Poster presented at Lattice 2004 (non-zero), Fermilab, June 21-26, 2004, 3 pages, 3 figure

    High power diode-bar-pumped Nd:YAG laser at 946nm

    No full text
    Diode-pumped Nd:YAG lasers operating at ~946nm are potentially attractive sources since they can be frequency-doubled to the blue. However, efficient lasing on the 946nm transition is considerably more difficult to achieve than on the more familiar 1.064µm transition. This is partly due to its quasi-three-level nature which results in a significant reabsorption loss which (at room temperature) is ~0.8%/mm for a 1% Nd doped YAG rod. The main problem however, with the 946nm line, is its small stimulated emission cross-section which is ~9 times smaller than for the 1.064µm line. As a result, 946nm Nd:YAG lasers have a threshold which is at least a factor of 9 times higher than for a comparable 1.064µm laser

    High temperature QCD with three flavors of improved staggered quarks

    Get PDF
    We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with Nt=4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, msm_s, and on lattices with Nt=6 and 8 for degenerate up and down quarks with masses in the range 0.2 m_s \leq m_{u,d} \leq 0.6 m_s, and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD.Comment: Lattice2002(Non-zero temperature and density

    Integer quantum Hall effect for hard-core bosons and a failure of bosonic Chern-Simons mean-field theories for electrons at half-filled Landau level

    Get PDF
    Field-theoretical methods have been shown to be useful in constructing simple effective theories for two-dimensional (2D) systems. These effective theories are usually studied by perturbing around a mean-field approximation, so the question whether such an approximation is meaningful arises immediately. We here study 2D interacting electrons in a half-filled Landau level mapped onto interacting hard-core bosons in a magnetic field. We argue that an interacting hard-core boson system in a uniform external field such that there is one flux quantum per particle (unit filling) exhibits an integer quantum Hall effect. As a consequence, the mean-field approximation for mapping electrons at half-filling to a boson system at integer filling fails.Comment: 13 pages latex with revtex. To be published in Phys. Rev.

    Sensitivity of the Mott Transition to Non-cubic Splitting of the Orbital Degeneracy: Application to NH3 K3C60

    Full text link
    Within dynamical mean-field theory, we study the metal-insulator transition of a twofold orbitally degenerate Hubbard model as a function of a splitting \Delta of the degeneracy. The phase diagram in the U-\Delta plane exhibits two-band and one-band metals, as well as the Mott insulator. The correlated two-band metal is easily driven to the insulator state by a strikingly weak splitting \Delta << W of the order of the Kondo-peak width zW, where z << 1 is the metal quasiparticle weight. The possible relevance of this result to the insulator-metal transition in the orthorhombic expanded fulleride NH3 K3C60 is discussed.Comment: revtex, 15 pages including 6 ps figures. Submitted to Phys. Rev.

    Azimuthal asymmetries at CLAS: Extraction of e^a(x) and prediction of A_{UL}

    Get PDF
    First information on the chirally odd twist-3 proton distribution function e(x) is extracted from the azimuthal asymmetry, A_{LU}, in the electro-production of pions from deeply inelastic scattering of longitudinally polarized electrons off unpolarized protons, which has been recently measured by CLAS collaboration. Furthermore parameter-free predictions are made for azimuthal asymmetries, A_{UL}, from scattering of an unpolarized beam on a polarized proton target for CLAS kinematics.Comment: 9 pages, 5 figures, late

    Quantum Hall ferromagnets, cooperative transport anisotropy, and the random field Ising model

    Get PDF
    We discuss the behaviour of a quantum Hall system when two Landau levels with opposite spin and combined filling factor near unity are brought into energetic coincidence using an in-plane component of magnetic field. We focus on the interpretation of recent experiments under these conditions [Zeitler et al, Phys. Rev. Lett. 86, 866 (2001); Pan et al, Phys. Rev. B 64, 121305 (2001)], in which a large resistance anisotropy develops at low temperatures. Modelling the systems involved as Ising quantum Hall ferromagnets, we suggest that this transport anisotropy reflects domain formation induced by a random field arising from isotropic sample surface roughness.Comment: 4 pages, submitted to Physical Review
    corecore