64 research outputs found

    Clinical practice. Diagnosis and treatment of cow’s milk allergy

    Get PDF
    Introduction Cow's milk allergy (CMA) is thought to affect 2-3% of infants. The signs and symptoms are nonspecific and may be difficult to objectify, and as the diagnosis requires cow's milk elimination followed by challenge, often, children are considered cow's milk allergic without proven diagnosis. Diagnosis Because of the consequences, a correct diagnosis of CMA is pivotal. Open challenges tend to overestimate the number of children with CMA. The only reliable way to diagnose CMA is by double-blind, placebo-controlled challenge (DBPCFC). Therapy At present, the only proven treatment consists of elimination of cow's milk protein from the child's diet and the introduction of formulas based on extensively hydrolysed whey protein or casein; amino acid-based formula is rarely indicated. The majority of children will regain tolerance to cow's milk within the first 5 years of life. Conclusions Open challenges can be used to reject CMA, but for adequate diagnosis, DBPCFC is mandatory. In most children, CMA can be adequately treated with extensively hydrolysed whey protein or casein formulas

    Clinical practice: Breastfeeding and the prevention of allergy

    Get PDF
    The increase in allergic disease prevalence has led to heightened interest in the factors determining allergy risk, fuelled by the hope that by influencing these factors one could reduce the prevalence of allergic conditions. The most important modifiable risk factors for allergy are maternal smoking behaviour and the type of feeding. A smoke-free environment for the child (to be), exclusive breastfeeding for 4–6 months and the postponement of supplementary feeding (solids) until 4 months of age are the main measures considered effective. There is no place for restricted diets during pregnancy or lactation. Although meta-analyses suggest that hypoallergenic formula after weaning from breastfeeding grants protection against the development of allergic disease, the evidence is limited and weak. Moreover, all current feeding measures aiming at allergy prevention fail to show effects on allergic manifestations later in life, such as asthma. In conclusion, the allergy preventive effect of dietary interventions in infancy is limited. Counselling of future parents on allergy prevention should pay attention to these limitations

    Clinical practice: Coeliac disease

    Get PDF
    Coeliac disease (CD) is an immune-mediated systemic condition elicited by gluten and related prolamines in genetically predisposed individuals and characterised by gluten-induced symptoms and signs, specific antibodies, a specific human leukocyte antigen (HLA) type and enteropathy. The risk of coeliac disease is increased in first-degree relatives, certain syndromes including Down syndrome and autoimmune disorders. It is thought to occur in 1 in 100–200 individuals, but still only one in four cases is diagnosed. Small-bowel biopsy is no longer deemed necessary in a subgroup of patients, i.e. when all of the following are present: typical symptoms or signs, high titres of and transglutaminase antibodies, endomysial antibodies, and HLA-type DQ2 or DQ8. In all other cases, small-bowel biopsy remains mandatory for a correct diagnosis. Therapy consists of a strictly gluten-free diet. This should result in complete disappearance of symptoms and of serological markers. Adequate follow-up is considered essential. Conclusion: Although small-bowel biopsy may be omitted in a minority of patients, small-bowel biopsy is essential for a correct diagnosis of CD in all other cases. Diagnostic work-up should be completed before treatment with gluten-free diet instituted

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe

    Kindergeneeskunde; Tweede, geheel herziene druk

    No full text

    Kindergeneeskunde; Tweede, geheel herziene druk

    No full text
    corecore