13 research outputs found

    A novel de novo paracentric inversion [inv(20)(q13.1q13.3)] accompanied by an 11q14.3-q21 microdeletion in a pediatric patient with an intellectual disability

    No full text
    A novel de novo paracentric inversion of the long arm of chromosome 20 [inv(20)(q13.1q13.3)], detected by conventional karyotyping in a 14-year-old boy with mental retardation is described. Further investigation by array comparative genomic hybridization (aCGH) revealed that the 20q inversion was not accompanied by microdeletions/microduplications containing disease-associated genes near or at the breakpoints. Two deletions at chromosomal regions 11q14.3q21 and 20q12 of 4.5 and 1.97 Mb size, respectively, containing important online Mendelian inheritance in man (OMIM) genes, were detected. The 4.5Mb 11q14.3q21 microdeletion was contained within a region that is involved, in most of the reported cases, with the interstitial 11q deletion and may be related to the mental retardation and developmental delay present in the patient. On the other hand, the published data about the 20q12 microdeletion are very few and it is not possible to correlate this finding with our patient's phenotype. This case report contributes to the description of a new chromosomal entity, not previously reported, and is therefore important, especially in prenatal diagnosis and management of patients. Array comparative genomic hybridization has proven a useful technique for detecting submicroscopic rearrangements and should be offered prenatally, especially in cases of de novo karyotypically balanced chromosomal inversions or translocations in order to unveil other unbalanced chromosomal abnormalities such as deletions and amplifications. © 2018 Zachaki S, Kouvidi E, Mitrakos A, Lazaros L, Pantou A, Mavrou A, Tzetis M, Manola KN published by Sciendo 2018

    A novel de novo paracentric inversion [inv(20)(q13.1q13.3)] accompanied by an 11q14.3-q21 microdeletion in a pediatric patient with an intellectual disability

    No full text
    A novel de novo paracentric inversion of the long arm of chromosome 20 [inv(20)(q13.1q13.3)], detected by conventional karyotyping in a 14-year-old boy with mental retardation is described. Further investigation by array comparative genomic hybridization (aCGH) revealed that the 20q inversion was not accompanied by microdeletions/microduplications containing disease-associated genes near or at the breakpoints. Two deletions at chromosomal regions 11q14.3q21 and 20q12 of 4.5 and 1.97 Mb size, respectively, containing important online Mendelian inheritance in man (OMIM) genes, were detected. The 4.5Mb 11q14.3q21 microdeletion was contained within a region that is involved, in most of the reported cases, with the interstitial 11q deletion and may be related to the mental retardation and developmental delay present in the patient. On the other hand, the published data about the 20q12 microdeletion are very few and it is not possible to correlate this finding with our patient’s phenotype. This case report contributes to the description of a new chromosomal entity, not previously reported, and is therefore important, especially in prenatal diagnosis and management of patients. Array comparative genomic hybridization has proven a useful technique for detecting submicroscopic rearrangements and should be offered prenatally, especially in cases of de novo karyotypically balanced chromosomal inversions or translocations in order to unveil other unbalanced chromosomal abnormalities such as deletions and amplifications

    Genotype-outcome correlations in pediatric AML: the impact of a monosomal karyotype in trial AML-BFM 2004

    Get PDF
    We conducted a cytogenetic analysis of 642 children with de novo acute myeloid leukemia (AML) treated on the AML-Berlin-Frankfurt-Münster (BFM) 04 protocol to determine the prognostic value of specific chromosomal aberrations including monosomal (MK+), complex (CK+) and hypodiploid (HK+) karyotypes, individually and in combination. Multivariate regression analysis identified in particular MK+ (n=22) as a new independent risk factor for poor event-free survival (EFS 23±9% vs 53±2% for all other patients, P=0.0003), even after exclusion of four patients with monosomy 7 (EFS 28±11%, P=0.0081). CK+ patients without MK had a better prognosis (n=47, EFS 47±8%, P=0.46) than those with MK+ (n=12, EFS 25±13%, P=0.024). HK+ (n=37, EFS 44±8% for total cohort, P=0.3) influenced outcome only when t(8;21) patients were excluded (remaining n=16, EFS 9±8%, P<0.0001). An extremely poor outcome was observed for MK+/HK+ patients (n=10, EFS 10±10%, P<0.0001). Finally, isolated trisomy 8 was also associated with low EFS (n=16, EFS 25±11%, P=0.0091). In conclusion, monosomal karyotype is a strong and independent predictor for high-risk pediatric AML. In addition, isolated trisomy 8 and hypodiploidy without t(8;21) coincide with dismal outcome. These results have important implications for risk stratification and should be further validated in independent pediatric cohorts
    corecore