38 research outputs found

    Serologic Cross-Reactivity of Human IgM and IgG Antibodies to Five Species of Ebola Virus

    Get PDF
    Five species of Ebola virus (EBOV) have been identified, with nucleotide differences of 30–45% between species. Four of these species have been shown to cause Ebola hemorrhagic fever (EHF) in humans and a fifth species (Reston ebolavirus) is capable of causing a similar disease in non-human primates. While examining potential serologic cross-reactivity between EBOV species is important for diagnostic assays as well as putative vaccines, the nature of cross-reactive antibodies following EBOV infection has not been thoroughly characterized. In order to examine cross-reactivity of human serologic responses to EBOV, we developed antigen preparations for all five EBOV species, and compared serologic responses by IgM capture and IgG enzyme-linked immunosorbent assay (ELISA) in groups of convalescent diagnostic sera from outbreaks in Kikwit, Democratic Republic of Congo (n = 24), Gulu, Uganda (n = 20), Bundibugyo, Uganda (n = 33), and the Philippines (n = 18), which represent outbreaks due to four different EBOV species. For groups of samples from Kikwit, Gulu, and Bundibugyo, some limited IgM cross-reactivity was noted between heterologous sera-antigen pairs, however, IgM responses were largely stronger against autologous antigen. In some instances IgG responses were higher to autologous antigen than heterologous antigen, however, in contrast to IgM responses, we observed strong cross-reactive IgG antibody responses to heterologous antigens among all sets of samples. Finally, we examined autologous IgM and IgG antibody levels, relative to time following EHF onset, and observed early peaking and declining IgM antibody levels (by 80 days) and early development and persistence of IgG antibodies among all samples, implying a consistent pattern of antibody kinetics, regardless of EBOV species. Our findings demonstrate limited cross-reactivity of IgM antibodies to EBOV, however, the stronger tendency for cross-reactive IgG antibody responses can largely circumvent limitations in the utility of heterologous antigen for diagnostic assays and may assist in the development of antibody-mediated vaccines to EBOV

    A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Brassica rapa </it>is an economically important crop and a model plant for studies concerning polyploidization and the evolution of extreme morphology. The multinational <it>B. rapa </it>Genome Sequencing Project (BrGSP) was launched in 2003. In 2008, next generation sequencing technology was used to sequence the <it>B. rapa </it>genome. Several maps concerning <it>B. rapa </it>pseudochromosome assembly have been published but their coverage of the genome is incomplete, anchoring approximately 73.6% of the scaffolds on to chromosomes. Therefore, a new genetic map to aid pseudochromosome assembly is required.</p> <p>Results</p> <p>This study concerns the construction of a reference genetic linkage map for <it>Brassica rapa</it>, forming the backbone for anchoring sequence scaffolds of the <it>B. rapa </it>genome resulting from recent sequencing efforts. One hundred and nineteen doubled haploid (DH) lines derived from microspore cultures of an F1 cross between a Chinese cabbage (<it>B. rapa </it>ssp. <it>pekinensis</it>) DH line (Z16) and a rapid cycling inbred line (L144) were used to construct the linkage map. PCR-based insertion/deletion (InDel) markers were developed by re-sequencing the two parental lines. The map comprises a total of 507 markers including 415 InDels and 92 SSRs. Alignment and orientation using SSR markers in common with existing <it>B. rapa </it>linkage maps allowed ten linkage groups to be identified, designated A01-A10. The total length of the linkage map was 1234.2 cM, with an average distance of 2.43 cM between adjacent marker loci. The lengths of linkage groups ranged from 71.5 cM to 188.5 cM for A08 and A09, respectively. Using the developed linkage map, 152 scaffolds were anchored on to the chromosomes, encompassing more than 82.9% of the <it>B. rapa </it>genome. Taken together with the previously available linkage maps, 183 scaffolds were anchored on to the chromosomes and the total coverage of the genome was 88.9%.</p> <p>Conclusions</p> <p>The development of this linkage map is vital for the integration of genome sequences and genetic information, and provides a useful resource for the international <it>Brassica </it>research community.</p

    The Isolation of Nucleic Acids from Fixed, Paraffin-Embedded Tissues–Which Methods Are Useful When?

    Get PDF
    Museums and pathology collections around the world represent an archive of genetic material to study populations and diseases. For preservation purposes, a large portion of these collections has been fixed in formalin-containing solutions, a treatment that results in cross-linking of biomolecules. Cross-linking not only complicates isolation of nucleic acid but also introduces polymerase “blocks” during PCR. A wide variety of methods exists for the recovery of DNA and RNA from archival tissues, and although a number of previous studies have qualitatively compared the relative merits of the different techniques, very few have undertaken wide scale quantitative comparisons. To help address this issue, we have undertaken a study that investigates the quality of nucleic acids recovered from a test panel of fixed specimens that have been manipulated following a number of the published protocols. These include methods of pre-treating the samples prior to extraction, extraction and nucleic acid purification methods themselves, and a post-extraction enzymatic repair technique. We find that although many of the published methods have distinct positive effects on some characteristics of the nucleic acids, the benefits often come at a cost. In addition, a number of the previously published techniques appear to have no effect at all. Our findings recommend that the extraction methodology adopted should be chosen carefully. Here we provide a quick reference table that can be used to determine appropriate protocols for particular aims

    Memory programming in CD8+ T-cell differentiation is intrinsic and is not determined by CD4 help

    No full text
    CD8(+) T cells activated without CD4(+) T-cell help are impaired in memory expansion. To understand the underlying cellular mechanism, here we track the dynamics of helper-deficient CD8(+) T-cell response to a minor histocompatibility antigen by phenotypic and in vivo imaging analyses. Helper-deficient CD8(+) T cells show reduced burst expansion, rapid peripheral egress, delayed antigen clearance and continuous activation, and are eventually exhausted. Contrary to the general consensus that CD4 help encodes memory programmes in CD8(+) T cells and helper-deficient CD8(+) T cells are abortive, these cells can differentiate into effectors and memory precursors. Importantly, accelerating antigen clearance or simply increasing the burst effector size enables generation of memory cells by CD8(+) T cells, regardless of CD4 help. These results suggest that the memory programme is CD8(+) T-cell-intrinsic, and provide insight into the role of CD4 help in CD8(+) T-cell responses
    corecore